scholarly journals Multi-Spectral Image Classification Based on an Object-Based Active Learning Approach

2020 ◽  
Vol 12 (3) ◽  
pp. 504 ◽  
Author(s):  
Tengfei Su ◽  
Shengwei Zhang ◽  
Tingxi Liu

In remote sensing, active learning (AL) is considered to be an effective solution to the problem of producing sufficient classification accuracy with a limited number of training samples. Though this field has been extensively studied, most papers exist in the pixel-based paradigm. In object-based image analysis (OBIA), AL has been comparatively less studied. This paper aims to propose a new AL method for selecting object-based samples. The proposed AL method solves the problem of how to identify the most informative segment-samples so that classification performance can be optimized. The advantage of this algorithm is that informativeness can be estimated by using various object-based features. The new approach has three key steps. First, a series of one-against-one binary random forest (RF) classifiers are initialized by using a small initial training set. This strategy allows for the estimation of the classification uncertainty in great detail. Second, each tested sample is processed by using the binary RFs, and a classification uncertainty value that can reflect informativeness is derived. Third, the samples with high uncertainty values are selected and then labeled by a supervisor. They are subsequently added into the training set, based on which the binary RFs are re-trained for the next iteration. The whole procedure is iterated until a stopping criterion is met. To validate the proposed method, three pairs of multi-spectral remote sensing images with different landscape patterns were used in this experiment. The results indicate that the proposed method can outperform other state-of-the-art AL methods. To be more specific, the highest overall accuracies for the three datasets were all obtained by using the proposed AL method, and the values were 88.32%, 85.77%, and 93.12% for “T1,” “T2,” and “T3,” respectively. Furthermore, since object-based features have a serious impact on the performance of AL, eight combinations of four feature types are investigated. The results show that the best feature combination is different for the three datasets due to the variation of the feature separability.

2020 ◽  
Vol 12 (11) ◽  
pp. 1772
Author(s):  
Brian Alan Johnson ◽  
Lei Ma

Image segmentation and geographic object-based image analysis (GEOBIA) were proposed around the turn of the century as a means to analyze high-spatial-resolution remote sensing images. Since then, object-based approaches have been used to analyze a wide range of images for numerous applications. In this Editorial, we present some highlights of image segmentation and GEOBIA research from the last two years (2018–2019), including a Special Issue published in the journal Remote Sensing. As a final contribution of this special issue, we have shared the views of 45 other researchers (corresponding authors of published papers on GEOBIA in 2018–2019) on the current state and future priorities of this field, gathered through an online survey. Most researchers surveyed acknowledged that image segmentation/GEOBIA approaches have achieved a high level of maturity, although the need for more free user-friendly software and tools, further automation, better integration with new machine-learning approaches (including deep learning), and more suitable accuracy assessment methods was frequently pointed out.


2021 ◽  
Vol 2082 (1) ◽  
pp. 012021
Author(s):  
Bingsen Guo

Abstract Data classification is one of the most critical issues in data mining with a large number of real-life applications. In many practical classification issues, there are various forms of anomalies in the real dataset. For example, the training set contains outliers, often enough to confuse the classifier and reduce its ability to learn from the data. In this paper, we propose a new data classification improvement approach based on kernel clustering. The proposed method can improve the classification performance by optimizing the training set. We first use the existing kernel clustering method to cluster the training set and optimize it based on the similarity between the training samples in each class and the corresponding class center. Then, the optimized reliable training set is trained to the standard classifier in the kernel space to classify each query sample. Extensive performance analysis shows that the proposed method achieves high performance, thus improving the classifier’s effectiveness.


2020 ◽  
Vol 202 ◽  
pp. 06036
Author(s):  
Nurhadi Bashit ◽  
Novia Sari Ristianti ◽  
Yudi Eko Windarto ◽  
Desyta Ulfiana

Klaten Regency is one of the regencies in Central Java Province that has an increasing population every year. This can cause an increase in built-up land for human activities. The built-up land needs to be monitored so that the construction is in accordance with the regional development plan so that it does not cause problems such as the occurrence of critical land. Therefore, it is necessary to monitor land use regularly. One method for monitoring land use is the remote sensing method. The remote sensing method is much more efficient in mapping land use because without having to survey the field. The remote sensing method utilizes satellite imagery data that can be processed for land use classification. This study uses the sentinel 2 satellite image data with the Object-Based Image Analysis (OBIA) algorithm to obtain land use classification. Sentinel 2 satellite imagery is a medium resolution image category with a spatial resolution of 10 meters. The land use classification can be used to see the distribution of built-up land in Klaten Regency without having to conduct a field survey. The results of the study obtained a segmentation scale parameter value of 60 and a merge scale parameter value of 85. The classification results obtained by 5 types of land use with OBIA. Agricultural land use dominates with an area of 50% of the total area.


2020 ◽  
Vol 12 (1) ◽  
pp. 174
Author(s):  
Tianjun Wu ◽  
Jiancheng Luo ◽  
Ya’nan Zhou ◽  
Changpeng Wang ◽  
Jiangbo Xi ◽  
...  

Land cover (LC) information plays an important role in different geoscience applications such as land resources and ecological environment monitoring. Enhancing the automation degree of LC classification and updating at a fine scale by remote sensing has become a key problem, as the capability of remote sensing data acquisition is constantly being improved in terms of spatial and temporal resolution. However, the present methods of generating LC information are relatively inefficient, in terms of manually selecting training samples among multitemporal observations, which is becoming the bottleneck of application-oriented LC mapping. Thus, the objectives of this study are to speed up the efficiency of LC information acquisition and update. This study proposes a rapid LC map updating approach at a geo-object scale for high-spatial-resolution (HSR) remote sensing. The challenge is to develop methodologies for quickly sampling. Hence, the core step of our proposed methodology is an automatic method of collecting samples from historical LC maps through combining change detection and label transfer. A data set with Chinese Gaofen-2 (GF-2) HSR satellite images is utilized to evaluate the effectiveness of our method for multitemporal updating of LC maps. Prior labels in a historical LC map are certified to be effective in a LC updating task, which contributes to improve the effectiveness of the LC map update by automatically generating a number of training samples for supervised classification. The experimental outcomes demonstrate that the proposed method enhances the automation degree of LC map updating and allows for geo-object-based up-to-date LC mapping with high accuracy. The results indicate that the proposed method boosts the ability of automatic update of LC map, and greatly reduces the complexity of visual sample acquisition. Furthermore, the accuracy of LC type and the fineness of polygon boundaries in the updated LC maps effectively reflect the characteristics of geo-object changes on the ground surface, which makes the proposed method suitable for many applications requiring refined LC maps.


Author(s):  
Lian-Zhi Huo ◽  
Ping Tang

Remote sensing (RS) technology provides essential data for monitoring the Earth. To fully utilize the data, image classification is often needed to convert data to information. The success of image classification methods greatly depends on the quality and quantity of training samples. To effectively select more informative training samples, this paper proposes a new active learning (AL) technique for classification of remote sensing (RS) images based on graph theory. A new diversity criterion is proposed based on geometrical features of the support vector machines (SVM) outputs. The diversity selection procedure is converted to the densest k-subgraph [Formula: see text] maximization problem in graph theory. The [Formula: see text] maximization problem is solved by a greedy algorithm. The proposed technique is compared with competing methods adopted in RS community. Experimental tests are performed on very high resolution (VHR) multispectral and hyperspectral images. Experimental results demonstrate that the proposed technique leads to comparable or even better classification accuracies with respect to competing methods on the two datasets.


2014 ◽  
Vol 48 (5) ◽  
pp. 81-91 ◽  
Author(s):  
Steve Foga ◽  
Leigh A. Stearns ◽  
C.J. van der Veen

AbstractIceberg calving is an efficient mechanism for ice mass loss, and rapidly calving glaciers are often considered to be inherently unstable. However, the physical controls on calving are not well understood. Recent studies hypothesize that the presence of a rigid ice mélange (composed of icebergs, bergy bits, and sea ice) can reduce iceberg calving by providing “backstress” to the terminus. To test this hypothesis we use remote sensing techniques to construct a time series model of calving rate and size and composition of the adjacent ice mélange. We describe a semi-automated routine for expediting the digitization process and illustrate the methods for Helheim Glacier, East Greenland, using 2008 data. Ice velocities of the glacier terminus and ice mélange are derived with feature-tracking software applied to radar imagery, which is successfully tracked year-round. Object-based image analysis (OBIA) is used to inventory icebergs and sea ice within the ice mélange. We find that the model successfully identifies the calving rate and ice mélange response trends associated with seasonal increases in terminus retreat and advance and shows seasonal trends of ice mélange potentially providing seasonal backstress on the glacier terminus.


Author(s):  
H. Y. Gu ◽  
H. T. Li ◽  
L. Yan ◽  
X. J. Lu

GEOBIA (Geographic Object-Based Image Analysis) is not only a hot topic of current remote sensing and geographical research. It is believed to be a paradigm in remote sensing and GIScience. The lack of a systematic approach designed to conceptualize and formalize the class definitions makes GEOBIA a highly subjective and difficult method to reproduce. This paper aims to put forward a framework for GEOBIA based on geographic ontology theory, which could implement "Geographic entities - Image objects - Geographic objects" true reappearance. It consists of three steps, first, geographical entities are described by geographic ontology, second, semantic network model is built based on OWL(ontology web language), at last, geographical objects are classified with decision rule or other classifiers. A case study of farmland ontology was conducted for describing the framework. The strength of this framework is that it provides interpretation strategies and global framework for GEOBIA with the property of objective, overall, universal, universality, etc., which avoids inconsistencies caused by different experts’ experience and provides an objective model for mage analysis.


Sign in / Sign up

Export Citation Format

Share Document