scholarly journals Flash Flood Susceptibility Modeling and Magnitude Index Using Machine Learning and Geohydrological Models: A Modified Hybrid Approach

2020 ◽  
Vol 12 (17) ◽  
pp. 2695
Author(s):  
Samy Elmahdy ◽  
Tarig Ali ◽  
Mohamed Mohamed

In an arid region, flash floods (FF), as a response to climate changes, are the most hazardous causing massive destruction and losses to farms, human lives and infrastructure. A first step towards securing lives and infrastructure is the susceptibility mapping and predicting of occurrence sites of FF. Several studies have been applied using an ensemble machine learning model (EMLM) but measuring FF magnitude using a hybrid approach that integrates machine learning (MCL) and geohydrological models have not been widely applied. This study aims to modify a hybrid approach by testing three machine learning models. These are boosted regression tree (BRT), classification and regression trees (CART), and naive Bayes tree (NBT) for FF susceptibility mapping at the northern part of the United Arab Emirates (NUAE). This is followed by applying a group of accuracy metrics (precision, recall and F1 score) and the receiving operating characteristics (ROC) curve. The result demonstrated that the BRT has the highest performance for FF susceptibility mapping followed by the CART and NBT. After that, the produced FF map using the BRT was then modified by dividing it into seven basins, and a set of new FF conditioning parameters namely alluvial plain width, basin gradient and mean slope for each basin was calculated for measuring FF magnitude. The results showed that the mountainous and narrower basins (e.g., RAK, Masafi, Fujairah, and Rol Dadnah) have the highest probability occurrence of FF and FF magnitude, while the wider alluvial plains (e.g., Al Dhaid) have the lowest probability occurrence of FF and FF magnitude. The proposed approach is an effective approach to improve the susceptibility mapping of FF, landslides, land subsidence, and groundwater potentiality obtained using ensemble machine learning, which is used widely in the literature.

2020 ◽  
Vol 12 (21) ◽  
pp. 3568
Author(s):  
Shahab S. Band ◽  
Saeid Janizadeh ◽  
Subodh Chandra Pal ◽  
Asish Saha ◽  
Rabin Chakrabortty ◽  
...  

Flash flooding is considered one of the most dynamic natural disasters for which measures need to be taken to minimize economic damages, adverse effects, and consequences by mapping flood susceptibility. Identifying areas prone to flash flooding is a crucial step in flash flood hazard management. In the present study, the Kalvan watershed in Markazi Province, Iran, was chosen to evaluate the flash flood susceptibility modeling. Thus, to detect flash flood-prone zones in this study area, five machine learning (ML) algorithms were tested. These included boosted regression tree (BRT), random forest (RF), parallel random forest (PRF), regularized random forest (RRF), and extremely randomized trees (ERT). Fifteen climatic and geo-environmental variables were used as inputs of the flash flood susceptibility models. The results showed that ERT was the most optimal model with an area under curve (AUC) value of 0.82. The rest of the models’ AUC values, i.e., RRF, PRF, RF, and BRT, were 0.80, 0.79, 0.78, and 0.75, respectively. In the ERT model, the areal coverage for very high to moderate flash flood susceptible area was 582.56 km2 (28.33%), and the rest of the portion was associated with very low to low susceptibility zones. It is concluded that topographical and hydrological parameters, e.g., altitude, slope, rainfall, and the river’s distance, were the most effective parameters. The results of this study will play a vital role in the planning and implementation of flood mitigation strategies in the region.


2020 ◽  
Vol 10 (11) ◽  
pp. 4016 ◽  
Author(s):  
Xudong Hu ◽  
Han Zhang ◽  
Hongbo Mei ◽  
Dunhui Xiao ◽  
Yuanyuan Li ◽  
...  

Landslide susceptibility mapping is considered to be a prerequisite for landslide prevention and mitigation. However, delineating the spatial occurrence pattern of the landslide remains a challenge. This study investigates the potential application of the stacking ensemble learning technique for landslide susceptibility assessment. In particular, support vector machine (SVM), artificial neural network (ANN), logical regression (LR), and naive Bayes (NB) were selected as base learners for the stacking ensemble method. The resampling scheme and Pearson’s correlation analysis were jointly used to evaluate the importance level of these base learners. A total of 388 landslides and 12 conditioning factors in the Lushui area (Southwest China) were used as the dataset to develop landslide modeling. The landslides were randomly separated into two parts, with 70% used for model training and 30% used for model validation. The models’ performance was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC) and statistical measures. The results showed that the stacking-based ensemble model achieved an improved predictive accuracy as compared to the single algorithms, while the SVM-ANN-NB-LR (SANL) model, the SVM-ANN-NB (SAN) model, and the ANN-NB-LR (ANL) models performed equally well, with AUC values of 0.931, 0.940, and 0.932, respectively, for validation stage. The correlation coefficient between the LR and SVM was the highest for all resampling rounds, with a value of 0.72 on average. This connotes that LR and SVM played an almost equal role when the ensemble of SANL was applied for landslide susceptibility analysis. Therefore, it is feasible to use the SAN model or the ANL model for the study area. The finding from this study suggests that the stacking ensemble machine learning method is promising for landslide susceptibility mapping in the Lushui area and is capable of targeting areas prone to landslides.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 145968-145983 ◽  
Author(s):  
Amirhosein Mosavi ◽  
Ataollah Shirzadi ◽  
Bahram Choubin ◽  
Fereshteh Taromideh ◽  
Farzaneh Sajedi Hosseini ◽  
...  

2019 ◽  
Vol 11 (19) ◽  
pp. 5426 ◽  
Author(s):  
Saeid Janizadeh ◽  
Mohammadtaghi Avand ◽  
Abolfazl Jaafari ◽  
Tran Van Phong ◽  
Mahmoud Bayat ◽  
...  

Floods are some of the most destructive and catastrophic disasters worldwide. Development of management plans needs a deep understanding of the likelihood and magnitude of future flood events. The purpose of this research was to estimate flash flood susceptibility in the Tafresh watershed, Iran, using five machine learning methods, i.e., alternating decision tree (ADT), functional tree (FT), kernel logistic regression (KLR), multilayer perceptron (MLP), and quadratic discriminant analysis (QDA). A geospatial database including 320 historical flood events was constructed and eight geo-environmental variables—elevation, slope, slope aspect, distance from rivers, average annual rainfall, land use, soil type, and lithology—were used as flood influencing factors. Based on a variety of performance metrics, it is revealed that the ADT method was dominant over the other methods. The FT method was ranked as the second-best method, followed by the KLR, MLP, and QDA. Given a few differences between the goodness-of-fit and prediction success of the methods, we concluded that all these five machine-learning-based models are applicable for flood susceptibility mapping in other areas to protect societies from devastating floods.


Information ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 332
Author(s):  
Ernest Kwame Ampomah ◽  
Zhiguang Qin ◽  
Gabriel Nyame

Forecasting the direction and trend of stock price is an important task which helps investors to make prudent financial decisions in the stock market. Investment in the stock market has a big risk associated with it. Minimizing prediction error reduces the investment risk. Machine learning (ML) models typically perform better than statistical and econometric models. Also, ensemble ML models have been shown in the literature to be able to produce superior performance than single ML models. In this work, we compare the effectiveness of tree-based ensemble ML models (Random Forest (RF), XGBoost Classifier (XG), Bagging Classifier (BC), AdaBoost Classifier (Ada), Extra Trees Classifier (ET), and Voting Classifier (VC)) in forecasting the direction of stock price movement. Eight different stock data from three stock exchanges (NYSE, NASDAQ, and NSE) are randomly collected and used for the study. Each data set is split into training and test set. Ten-fold cross validation accuracy is used to evaluate the ML models on the training set. In addition, the ML models are evaluated on the test set using accuracy, precision, recall, F1-score, specificity, and area under receiver operating characteristics curve (AUC-ROC). Kendall W test of concordance is used to rank the performance of the tree-based ML algorithms. For the training set, the AdaBoost model performed better than the rest of the models. For the test set, accuracy, precision, F1-score, and AUC metrics generated results significant to rank the models, and the Extra Trees classifier outperformed the other models in all the rankings.


Sign in / Sign up

Export Citation Format

Share Document