scholarly journals The Role of Mean Sea Level Annual Cycle on Extreme Water Levels Along European Coastline

2020 ◽  
Vol 12 (20) ◽  
pp. 3419
Author(s):  
Tomás Fernández-Montblanc ◽  
Jesús Gómez-Enri ◽  
Paolo Ciavola

The knowledge of extreme total water levels (ETWLs) and the derived impact, coastal flooding and erosion, is crucial to face the present and future challenges exacerbated in European densely populated coastal areas. Based on 24 years (1993–2016) of multimission radar altimetry, this paper investigates the contribution of each water level component: tide, surge and annual cycle of monthly mean sea level (MMSL) to the ETWLs. It focuses on the contribution of the annual variation of MMSL in the coastal flooding extreme events registered in a European database. In microtidal areas (Black, Baltic and Mediterranean Sea), the MMSL contribution is mostly larger than tide, and it can be at the same order of magnitude of the surge. In meso and macrotidal areas, the MMSL contribution is <20% of the total water level, but larger (>30%) in the North Sea. No correlation was observed between the average annual cycle of monthly mean sea level (AMMSL) and coastal flooding extreme events (CFEEs) along the European coastal line. Positive correlations of the component variance of MMSL with the relative frequency of CFEEs extend to the Central Mediterranean (r = 0.59), North Sea (r = 0.60) and Baltic Sea (r = 0.75). In the case of positive MMSL anomalies, the correlation expands to the Bay of Biscay and northern North Atlantic (at >90% of statistical significance). The understanding of the spatial and temporal patterns of a combination of all the components of the ETWLs shall improve the preparedness and coastal adaptation measures to reduce the impact of coastal flooding.

Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 95
Author(s):  
Phil J. Watson

This paper provides an Extreme Value Analysis (EVA) of the hourly water level record at Fort Denison dating back to 1915 to understand the statistical likelihood of the combination of high predicted tides and the more dynamic influences that can drive ocean water levels higher at the coast. The analysis is based on the Peaks-Over-Threshold (POT) method using a fitted Generalised Pareto Distribution (GPD) function to estimate extreme hourly heights above mean sea level. The analysis highlights the impact of the 1974 East Coast Low event and rarity of the associated measured water level above mean sea level at Sydney, with an estimated return period exceeding 1000 years. Extreme hourly predictions are integrated with future projections of sea level rise to provide estimates of relevant still water levels at 2050, 2070 and 2100 for a range of return periods (1 to 1000 years) for use in coastal zone management, design, and sea level rise adaptation planning along the NSW coastline. The analytical procedures described provide a step-by-step guide for practitioners on how to develop similar baseline information from any long tide gauge record and the associated limitations and key sensitivities that must be understood and appreciated in applying EVA.


2018 ◽  
Vol 18 (10) ◽  
pp. 2785-2799 ◽  
Author(s):  
Ulpu Leijala ◽  
Jan-Victor Björkqvist ◽  
Milla M. Johansson ◽  
Havu Pellikka ◽  
Lauri Laakso ◽  
...  

Abstract. Tools for estimating probabilities of flooding hazards caused by the simultaneous effect of sea level and waves are needed for the secure planning of densely populated coastal areas that are strongly vulnerable to climate change. In this paper we present a method for combining location-specific probability distributions of three different components: (1) long-term mean sea level change, (2) short-term sea level variations and (3) wind-generated waves. We apply the method at two locations in the Helsinki archipelago to obtain total water level estimates representing the joint effect of the still water level and the wave run-up for the present, 2050 and 2100. The variability of the wave conditions between the study sites leads to a difference in the safe building levels of up to 1 m. The rising mean sea level in the Gulf of Finland and the uncertainty related to the associated scenarios contribute notably to the total water levels for the year 2100. A test with theoretical wave run-up distributions illustrates the effect of the relative magnitude of the sea level variations and wave conditions on the total water level. We also discuss our method's applicability to other coastal regions.


Ocean Science ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 31-44 ◽  
Author(s):  
Caroline Rasquin ◽  
Rita Seiffert ◽  
Benno Wachler ◽  
Norbert Winkel

Abstract. Due to climate change an accelerated mean sea level rise is expected. One key question for the development of adaptation measures is how mean sea level rise affects tidal dynamics in shelf seas such as the North Sea. Owing to its low-lying coastal areas, the German Bight (located in the southeast of the North Sea) will be especially affected. Numerical hydrodynamic models help to understand how mean sea level rise changes tidal dynamics. Models cannot adequately represent all processes in overall detail. One limiting factor is the resolution of the model grid. In this study we investigate which role the representation of the coastal bathymetry plays when analysing the response of tidal dynamics to mean sea level rise. Using a shelf model including the whole North Sea and a high-resolution hydrodynamic model of the German Bight we investigate the changes in M2 amplitude due to a mean sea level rise of 0.8 and 10 m. The shelf model and the German Bight Model react in different ways. In the simulations with a mean sea level rise of 0.8 m the M2 amplitude in the shelf model generally increases in the region of the German Bight. In contrast, the M2 amplitude in the German Bight Model increases only in some coastal areas and decreases in the northern part of the German Bight. In the simulations with a mean sea level rise of 10 m the M2 amplitude increases in both models with largely similar spatial patterns. In two case studies we adjust the German Bight Model in order to more closely resemble the shelf model. We find that a different resolution of the bathymetry results in different energy dissipation changes in response to mean sea level rise. Our results show that the resolution of the bathymetry especially in flat intertidal areas plays a crucial role for modelling the impact of mean sea level rise.


2020 ◽  
Author(s):  
Corinna Jensen ◽  
Jens Möller ◽  
Peter Löwe

&lt;p&gt;Within the &amp;#8220;Network of experts&amp;#8221; of the German Federal Ministry of Transport and Digital Infrastructure (BMVI), the effect of climate change on infrastructure is investigated. One aspect of this project is the future dewatering situation of the Kiel Canal (&amp;#8220;Nord-Ostsee-Kanal&amp;#8221; (NOK)). The Kiel Canal is one of the world&amp;#8217;s busiest man-made waterways navigable by seagoing ships. It connects the North Sea to the Baltic Sea and can save the ships hundreds of kilometers of distance. With a total annual sum of transferred cargo of up to 100 million tons it is an economically very important transportation way. Additionally to the transportation of cargo, the canal is also used to discharge water from smaller rivers as well as drainage of a catchments area of about 1500 km&amp;#178;.&lt;/p&gt;&lt;p&gt;The canal can only operate in a certain water level range. If its water level exceeds the maximum level, the water must be drained into the sea. In 90% of the time, the water is drained into the North Sea during time windows with low tide. If the water level outside of the canal is too high, drainage is not possible and the canal traffic has to be reduced or, in extreme cases, shut down. Due to the expected sea level rise, the potential time windows for dewatering are decreasing in the future. With a decrease in operational hours, there will be substantial economic losses as well as an increase in traffic around Denmark.&lt;/p&gt;&lt;p&gt;To get a better understanding of what causes tense dewatering situations other than sea level rise a linkage between high water levels on the outside of the canal and weather types is made. Weather types describe large-scale circulation patterns and can therefore give an estimate on tracks of low-pressure systems as well as the prevailing winds, which can explain surges and water levels at the coast. This analysis is conducted for one weather type classification method based solely on sea level pressure fields. Weather types derived from regionally coupled climate models as well as reanalyses are investigated.&lt;/p&gt;


2020 ◽  
Author(s):  
Pau Luque Lozano ◽  
Lluís Gómez-Pujol ◽  
Marta Marcos ◽  
Alejandro Orfila

&lt;p&gt;Sea-level rise induces a permanent loss of land with widespread ecological and economic impacts, most evident in urban and densely populated areas. The eventual coastline retreat combined with the action of waves and storm surges will end in more severe damages over coastal areas. These effects are expected to be particularly significant over islands, where coastal zones represent a relatively larger area vulnerable to marine hazards.&lt;/p&gt;&lt;p&gt;Managing coastal flood risk at regional scales requires a prioritization of resources and socioeconomic activities along the coast. Stakeholders, such as regional authorities, coastal managers and private companies, need tools that help to address the evaluation of coastal risks and criteria to support decision-makers to clarify priorities and critical sites. For this reason, the regional Government of the Balearic Islands (Spain) in association with the Spanish Ministry of Agriculture, Fisheries and Environment has launched the Plan for Climate Change Coastal Adaptation. This framework integrates two levels of analysis. The first one relates with the identification of critical areas affected by coastal flooding and erosion under mean sea-level rise scenarios and the quantification of the extent of flooding, including marine extreme events. The second level assesses the impacts on infrastructures and assets from a socioeconomic perspective due to these hazards.&lt;/p&gt;&lt;p&gt;In this context, this paper quantifies the effects of sea-level rise and marine extreme events caused by storm surges and waves along the coasts of the Balearic Islands (Western Mediterranean Sea) in terms of coastal flooding and potential erosion. Given the regional scale (~1500 km) of this study, the presented methodology adopts a compromise between accuracy, physical representativity and computational costs. We map the projected flooded coastal areas under two mean sea-level rise climate change scenarios, RCP4.5 and RCP8.5. To do so, we apply a corrected bathtub algorithm. Additionally, we compute the impact of extreme storm surges and waves using two 35-year hindcasts consistently forced by mean sea level pressure and surface winds from ERA-Interim reanalysis. Waves have been further propagated towards the nearshore to compute wave setup with higher accuracy. The 100-year return levels of joint storm surges and waves are used to map the spatial extent of flooding in more than 200 sandy beaches around the Balearic Islands by mid and late 21st century, using the hydrodynamical LISFLOOD-FP model and a high resolution (2 m) Digital Elevation Model.&lt;/p&gt;


2011 ◽  
Vol 11 (2) ◽  
pp. 613-625 ◽  
Author(s):  
D. F. Rasilla Álvarez ◽  
J. C. García Codron

Abstract. This paper assesses the evolution of storminess along the northern coast of the Iberian Peninsula through the calculation of extreme (1%) Total Water Levels (eTWL) on both observed (tide gauge and buoy data) and hindcasted (SIMAR-44) data. Those events were first identified and then characterized in terms of oceanographic parameters and atmospheric circulation features. Additionally, an analysis of the long-term trends in both types of data was performed. Most of the events correspond to a rough wave climate and moderate storm surges, linked to extratropical disturbances following a northern track. While local atmospheric conditions seem to be evolving towards lesser storminess, their impact has been balanced by the favorable exposure of the northern coast of the Iberian Peninsula to the increasing frequency and strength of distant disturbances crossing the North Atlantic. This evolution is also correctly reproduced by the simulated long-term evolution of the forcing component (meteorological sea level residuals and wave run up) of the Total Water Level values calculated from the SIMAR 44 database, since sea level residuals have been experiencing a reduction while waves are arriving with longer periods. Finally, the addition of the rate of relative sea level trend to the temporal evolution of the atmospheric forcing component of the Total Water Level values is enough to simulate more frequent and persistent eTWL.


2003 ◽  
Vol 82 (2) ◽  
pp. 115-131 ◽  
Author(s):  
B. Makaske ◽  
D.G. Van Smeerdijk ◽  
H. Peeters ◽  
J.R. Mulder ◽  
T. Spek

AbstractThe rise of Holocene (ground)water level as a function of relative sea-level rise has been extensively investigated in the western Netherlands, whereas few studies focused on the Flevo lagoon in the central Netherlands. In this study, all available 14C dates from the base of basal peat overlying the top of compaction-free Pleistocene sand in the former Flevo lagoon were evaluated in order to reconstruct water-level rise for the period 5300-2000 cal. yr BC. The present basal peat 14C data set from Flevoland consists of two subsets: (1) the largely new Almere data (41 dates) representing the southern part of the former Flevo lagoon, with 26 dates especially carried out for this study, and (2) the existing Schokland data (21 dates) representing the eastern part of the lagoon. The Schokland area is located about 50 km from the Almere area. The quality of all basal peat time-depth data was palaeo-ecologically and geologically evaluated, all 14C dates were calibrated to the same standards, and error margins of age and altitude determination were estimated. After plotting the data as error boxes in time-depth graphs, lower limit curves for water-level rise were constructed for both data sets. Comparison with the mean sea-level curve for The Netherlands (Van de Plassche, 1982) suggests that water-level rise in the Almere area between 5300 and 2000 cal. yr BC corresponded closely to the rise in mean sea level. The same holds for the Schokland area for the period 5000-4200 cal. yr BC. For the period 4200-2000 cal. yr BC, however, the Schokland data suggest water-level rise to have been slower than mean sea-level rise, leading to local water levels apparently below mean sea level, which is virtually impossible. Hypothetical explanations for this discrepancy include: errors and uncertainties in mean sea-level and local water-level reconstruction, basin subsidence and temporal differences in intra-coastal tidal damping. The presently available data are inconclusive at this point and Holocene water-level rise in the Flevo lagoon awaits further investigations.


Author(s):  
J Wolf ◽  
R.A Flather

Waves and sea levels have been modelled for the storm of 31 January–1 February 1953. Problems in modelling this event are associated with the difficulty of reconstructing wind fields and validating the model results with the limited data available from 50 years ago. The reconstruction of appropriate wind fields for surge and wave models is examined. The surges and waves are reproduced reasonably well on the basis of tide-gauge observations and the sparse observational information on wave heights. The maximum surge coincided closely in time with tidal high water, producing very high water levels along the coasts of the southern North Sea. The statistics of the 1953 event and the likelihood of recurrence are also discussed. Both surge and wave components were estimated to be approximately 1 in 50 year events. The maximum water level also occurred when the offshore waves were close to their maximum. The estimation of return period for the total water level is more problematic and is dependent on location. A scenario with the 1953 storm occurring in 2075, accounting for the effects of sea level rise and land movements, is also constructed, suggesting that sea level relative to the land could be 0.4–0.5 m higher than in 1953 in the southern North Sea, assuming a rise in mean sea level of 0.4 m.


2020 ◽  
Vol 20 (3) ◽  
pp. 783-796 ◽  
Author(s):  
Scott A. Stephens ◽  
Robert G. Bell ◽  
Ivan D. Haigh

Abstract. Coastal flooding is a major global hazard, yet few studies have examined the spatial and temporal characteristics of extreme sea level and associated coastal flooding. Here we analyse sea-level records around the coast of New Zealand (NZ) to quantify extreme storm-tide and skew-surge frequency and magnitude. We identify the relative magnitude of sea-level components contributing to 85 extreme sea level and 135 extreme skew-surge events recorded in NZ since 1900. We then examine the spatial and temporal clustering of these extreme storm-tide and skew-surge events and identify typical storm tracks and weather types associated with the spatial clusters of extreme events. We find that most extreme storm tides were driven by moderate skew surges combined with high perigean spring tides. The spring–neap tidal cycle, coupled with a moderate surge climatology, prevents successive extreme storm-tide events from happening within 4–10 d of each other, and generally there are at least 10 d between extreme storm-tide events. This is similar to findings from the UK (Haigh et al., 2016), despite NZ having smaller tides. Extreme events more commonly impacted the east coast of the North Island of NZ during blocking weather types, and the South Island and west coast of the North Island during trough weather types. The seasonal distribution of both extreme storm-tide and skew-surge events closely follows the seasonal pattern of mean sea-level anomaly (MSLA) – MSLA was positive in 92 % of all extreme storm-tide events and in 88 % of all extreme skew-surge events. The strong influence of low-amplitude (−0.06 to 0.28 m) MSLA on the timing of extreme events shows that mean sea-level rise (SLR) of similarly small height will drive rapid increases in the frequency of presently rare extreme sea levels. These findings have important implications for flood management, emergency response and the insurance sector, because impacts and losses may be correlated in space and time.


2019 ◽  
Author(s):  
Iris Grabemann ◽  
Lidia Gaslikova ◽  
Tabea Brodhagen ◽  
Elisabeth Rudolph

Abstract. Storm tides are an essential hazard for the German North Sea coasts. For coastal protection and economic activities, planning information on probability and magnitude of extreme storm tides and their possible future changes is important. This study focuses on the most extreme events and examines whether they could have become more severe under slightly different conditions still remaining within the physical plausibility. In the face of limited amount of observational data on very severe events, an extensive set of model data is used to extract most extreme storm tide events for locations in the German Bight, in particular Borkum and the Ems estuary. The data set includes water levels and respective atmospheric conditions from a hindcast and future climate realizations without sea level rise describing today's and possible future conditions. A number of very severe events with water levels exceeding those measured near Borkum since 1906 has been identified in the data set. A possible further amplification of the highest events is investigated by simulating these events for the North Sea with different phase lags between the astronomical tide given at the open model boundaries and the wind forcing. It was found that superposition of spring tide conditions, different timing of the astronomical high water and atmospheric conditions during the highest storm event would cause an enhancement of the highest water level up to about 50 cm. The amplified water levels of the two highest events from the data set are used to analyse the effects in the Ems estuary using a high-resolution model of the German Bight. Additionally, the influence of an extreme river runoff and of sea level rise is studied. The extreme river runoff of 1200 m3 s−1 increases the highest water levels by several decimeters in the narrow upstream part of the Ems estuary. This effect diminishes downstream. The sea level rise increases the water level in the downstream part of the Ems estuary by the amount applied at the model boundary to the North Sea. In the upstream part, its influence on the water level decreases. This study may serve as a first step towards an impact assessment for severe storm tides and their implications for coastal areas and activities.


Sign in / Sign up

Export Citation Format

Share Document