scholarly journals Flood Mapping in Vegetated Areas Using an Unsupervised Clustering Approach on Sentinel-1 and -2 Imagery

2020 ◽  
Vol 12 (21) ◽  
pp. 3611
Author(s):  
Lisa Landuyt ◽  
Niko E. C. Verhoest ◽  
Frieke M. B. Van Coillie

The European Space Agency’s Sentinel-1 constellation provides timely and freely available dual-polarized C-band Synthetic Aperture Radar (SAR) imagery. The launch of these and other SAR sensors has boosted the field of SAR-based flood mapping. However, flood mapping in vegetated areas remains a topic under investigation, as backscatter is the result of a complex mixture of backscattering mechanisms and strongly depends on the wave and vegetation characteristics. In this paper, we present an unsupervised object-based clustering framework capable of mapping flooding in the presence and absence of flooded vegetation based on freely and globally available data only. Based on a SAR image pair, the region of interest is segmented into objects, which are converted to a SAR-optical feature space and clustered using K-means. These clusters are then classified based on automatically determined thresholds, and the resulting classification is refined by means of several region growing post-processing steps. The final outcome discriminates between dry land, permanent water, open flooding, and flooded vegetation. Forested areas, which might hide flooding, are indicated as well. The framework is presented based on four case studies, of which two contain flooded vegetation. For the optimal parameter combination, three-class F1 scores between 0.76 and 0.91 are obtained depending on the case, and the pixel- and object-based thresholding benchmarks are outperformed. Furthermore, this framework allows an easy integration of additional data sources when these become available.

2020 ◽  
Vol 12 (6) ◽  
pp. 961 ◽  
Author(s):  
Marinalva Dias Soares ◽  
Luciano Vieira Dutra ◽  
Gilson Alexandre Ostwald Pedro da Costa ◽  
Raul Queiroz Feitosa ◽  
Rogério Galante Negri ◽  
...  

Per-point classification is a traditional method for remote sensing data classification, and for radar data in particular. Compared with optical data, the discriminative power of radar data is quite limited, for most applications. A way of trying to overcome these difficulties is to use Region-Based Classification (RBC), also referred to as Geographical Object-Based Image Analysis (GEOBIA). RBC methods first aggregate pixels into homogeneous objects, or regions, using a segmentation procedure. Moreover, segmentation is known to be an ill-conditioned problem because it admits multiple solutions, and a small change in the input image, or segmentation parameters, may lead to significant changes in the image partitioning. In this context, this paper proposes and evaluates novel approaches for SAR data classification, which rely on specialized segmentations, and on the combination of partial maps produced by classification ensembles. Such approaches comprise a meta-methodology, in the sense that they are independent from segmentation and classification algorithms, and optimization procedures. Results are shown that improve the classification accuracy from Kappa = 0.4 (baseline method) to a Kappa = 0.77 with the presented method. Another test site presented an improvement from Kappa = 0.36 to a maximum of 0.66 also with radar data.


Author(s):  
Rudolph Joshua Candare ◽  
Michelle Japitana ◽  
James Earl Cubillas ◽  
Cherry Bryan Ramirez

This research describes the methods involved in the mapping of different high value crops in Agusan del Norte Philippines using LiDAR. This project is part of the Phil-LiDAR 2 Program which aims to conduct a nationwide resource assessment using LiDAR. Because of the high resolution data involved, the methodology described here utilizes object-based image analysis and the use of optimal features from LiDAR data and Orthophoto. Object-based classification was primarily done by developing rule-sets in eCognition. Several features from the LiDAR data and Orthophotos were used in the development of rule-sets for classification. Generally, classes of objects can't be separated by simple thresholds from different features making it difficult to develop a rule-set. To resolve this problem, the image-objects were subjected to Support Vector Machine learning. SVMs have gained popularity because of their ability to generalize well given a limited number of training samples. However, SVMs also suffer from parameter assignment issues that can significantly affect the classification results. More specifically, the regularization parameter C in linear SVM has to be optimized through cross validation to increase the overall accuracy. After performing the segmentation in eCognition, the optimization procedure as well as the extraction of the equations of the hyper-planes was done in Matlab. The learned hyper-planes separating one class from another in the multi-dimensional feature-space can be thought of as super-features which were then used in developing the classifier rule set in eCognition. In this study, we report an overall classification accuracy of greater than 90% in different areas.


2021 ◽  
Author(s):  
Goutam Konapala ◽  
Sujay Kumar

<p>Identification of flood water extent from satellite images has historically relied on either synthetic aperture radar (SAR) or multi-spectral (MS) imagery. But MS sensors may not penetrate cloud cover, whereas SAR is plagued by operational errors such as noise-like speckle challenging their viability to global flood mapping applications. An attractive alternative is to effectively combine MS data and SAR, i.e., two aspects that can be considered complementary with respect to flood mapping tasks. Therefore, in this study, we explore the diverse bands of Sentinel 2 (S2) derived water indices and Sentinel 1 (S1) derived SAR imagery along with their combinations to access their capability in generating accurate flood inundation maps. For this purpose, a fully connected deep convolutional neural network known as U-Net is applied to combinations of S1 and S2 bands to 446 (training: 313, validating: 44, testing: 89) hand labeled flood inundation extents derived from Sen1Floods11 dataset spanning across 11 flood events. The trained U-net was able to achieve a median F1 score of 0.74 when using DEM and S1 bands as input in comparison to 0.63 when using only S1 bands highlighting the active positive role of DEM in mapping floods. Among the, S2 bands, HSV (Hue, Saturation, Value) transformation of Sentinel 2 data has achieved a median F1 score of 0.94 outperforming the commonly used water spectral indices owing to HSV’s transformation’s superior contrast distinguishing abilities. Also, when combined with Sentinel 1 SAR imagery too, HSV achieves a median F1 score 0.95 outperforming all the well-established water indices in detecting floods in majority of test images.</p>


2019 ◽  
Vol 8 (12) ◽  
pp. 551 ◽  
Author(s):  
Raphael Knevels ◽  
Helene Petschko ◽  
Philip Leopold ◽  
Alexander Brenning

With the increased availability of high-resolution digital terrain models (HRDTM) generated using airborne light detection and ranging (LiDAR), new opportunities for improved mapping of geohazards such as landslides arise. While the visual interpretation of LiDAR, HRDTM hillshades is a widely used approach, the automatic detection of landslides is promising to significantly speed up the compilation of inventories. Previous studies on automatic landslide detection often used a combination of optical imagery and geomorphometric data, and were implemented in commercial software. The objective of this study was to investigate the potential of open source software for automated landslide detection solely based on HRDTM-derived data in a study area in Burgenland, Austria. We implemented a geographic object-based image analysis (GEOBIA) consisting of (1) the calculation of land-surface variables, textural features and shape metrics, (2) the automated optimization of segmentation scale parameters, (3) region-growing segmentation of the landscape, (4) the supervised classification of landslide parts (scarp and body) using support vector machines (SVM), and (5) an assessment of the overall classification performance using a landslide inventory. We used the free and open source data-analysis environment R and its coupled geographic information system (GIS) software for the analysis; our code is included in the Supplementary Materials. The developed approach achieved a good performance (κ = 0.42) in the identification of landslides.


Author(s):  
M. Boldt ◽  
A. Thiele ◽  
K. Schulz ◽  
S. Hinz

In the last years, the spatial resolution of remote sensing sensors and imagery has continuously improved. Focusing on spaceborne Synthetic Aperture Radar (SAR) sensors, the satellites of the current generation (TerraSAR-X, COSMO-SykMed) are able to acquire images with sub-meter resolution. Indeed, high resolution imagery is visually much better interpretable, but most of the established pixel-based analysis methods have become more or less impracticable since, in high resolution images, self-sufficient objects (vehicle, building) are represented by a large number of pixels. Methods dealing with Object-Based Image Analysis (OBIA) provide help. Objects (segments) are groupings of pixels resulting from image segmentation algorithms based on homogeneity criteria. The image set is represented by image segments, which allows the development of rule-based analysis schemes. For example, segments can be described or categorized by their local neighborhood in a context-based manner. <br><br> In this paper, a novel method for the segmentation of high resolution SAR images is presented. It is based on the calculation of morphological differential attribute profiles (DAP) which are analyzed pixel-wise in a region growing procedure. The method distinguishes between heterogeneous and homogeneous image content and delivers a precise segmentation result.


2017 ◽  
Vol 17 (04) ◽  
pp. 1750024 ◽  
Author(s):  
Qianwen Li ◽  
Zhihua Wei ◽  
Cairong Zhao

Region of interest (ROI) is the most important part of an image that expresses the effective content of the image. Extracting regions of interest from images accurately and efficiently can reduce computational complexity and is essential for image analysis and understanding. In order to achieve the automatic extraction of regions of interest and obtain more accurate regions of interest, this paper proposes Optimized Automatic Seeded Region Growing (OASRG) algorithm. The algorithm uses the affinity propagation (AP) clustering algorithm to extract the seeds automatically, and optimizes the traditional region growing algorithm by regrowing strategy to obtain the regions of interest where target objects are contained. Experimental results show that our algorithm can automatically locate seeds and produce results as good as traditional region growing with seeds selected manually. Furthermore, the precision is improved and the extraction effect is better after the optimization with regrowing strategy.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Huiyan Jiang ◽  
Baochun He ◽  
Di Fang ◽  
Zhiyuan Ma ◽  
Benqiang Yang ◽  
...  

We propose a region growing vessel segmentation algorithm based on spectrum information. First, the algorithm does Fourier transform on the region of interest containing vascular structures to obtain its spectrum information, according to which its primary feature direction will be extracted. Then combined edge information with primary feature direction computes the vascular structure’s center points as the seed points of region growing segmentation. At last, the improved region growing method with branch-based growth strategy is used to segment the vessels. To prove the effectiveness of our algorithm, we use the retinal and abdomen liver vascular CT images to do experiments. The results show that the proposed vessel segmentation algorithm can not only extract the high quality target vessel region, but also can effectively reduce the manual intervention.


Author(s):  
Rudolph Joshua Candare ◽  
Michelle Japitana ◽  
James Earl Cubillas ◽  
Cherry Bryan Ramirez

This research describes the methods involved in the mapping of different high value crops in Agusan del Norte Philippines using LiDAR. This project is part of the Phil-LiDAR 2 Program which aims to conduct a nationwide resource assessment using LiDAR. Because of the high resolution data involved, the methodology described here utilizes object-based image analysis and the use of optimal features from LiDAR data and Orthophoto. Object-based classification was primarily done by developing rule-sets in eCognition. Several features from the LiDAR data and Orthophotos were used in the development of rule-sets for classification. Generally, classes of objects can't be separated by simple thresholds from different features making it difficult to develop a rule-set. To resolve this problem, the image-objects were subjected to Support Vector Machine learning. SVMs have gained popularity because of their ability to generalize well given a limited number of training samples. However, SVMs also suffer from parameter assignment issues that can significantly affect the classification results. More specifically, the regularization parameter C in linear SVM has to be optimized through cross validation to increase the overall accuracy. After performing the segmentation in eCognition, the optimization procedure as well as the extraction of the equations of the hyper-planes was done in Matlab. The learned hyper-planes separating one class from another in the multi-dimensional feature-space can be thought of as super-features which were then used in developing the classifier rule set in eCognition. In this study, we report an overall classification accuracy of greater than 90% in different areas.


Author(s):  
M. Modi ◽  
R. Kumar ◽  
G. Ravi Shankar ◽  
T.R. Martha

Land use/land cover (LULC) is dynamic in nature and can affect the ability of land to sustain human activities. The Indo-Gangetic plains of north Bihar in eastern India are prone to floods, which have a significant impact on land use / land cover, particularly agricultural lands and settlement areas. Satellite remote sensing techniques allow generating reliable and near-realtime information of LULC and have the potential to monitor these changes due to periodic flood. Automated methods such as object-based techniques have better potential to highlight changes through time series data analysis in comparison to pixel-based methods, since the former provides an opportunity to apply shape, context criteria in addition to spectral criteria to accurately characterise the changes. In this study, part of Kosi river flood plains in Supaul district, Bihar has been analysed to identify changes due to a flooding event in 2008. Object samples were collected from the post-flood image for a nearest neighbourhood (NN) classification in an object-based environment. Collection of sample were partially supported by the existing 2004&ndash;05 database. The feature space optimisation procedure was adopted to calculate an optimum feature combination (i.e. object property) that can provide highest classification accuracy. In the study, for classification of post-flood image, best class separation was obtained by using distance of 0.533 for 28 parameters out of 34. Results show that the Kosi flood has resulted in formation of sandy riverine areas.


Sign in / Sign up

Export Citation Format

Share Document