scholarly journals Improved Prototypical Network Model for Forest Species Classification in Complex Stand

2020 ◽  
Vol 12 (22) ◽  
pp. 3839
Author(s):  
Xiaomin Tian ◽  
Long Chen ◽  
Xiaoli Zhang ◽  
Erxue Chen

Deep learning has become an effective method for hyperspectral image classification. However, the high band correlation and data volume associated with airborne hyperspectral images, and the insufficiency of training samples, present challenges to the application of deep learning in airborne image classification. Prototypical networks are practical deep learning networks that have demonstrated effectiveness in handling small-sample classification. In this study, an improved prototypical network is proposed (by adding L2 regularization to the convolutional layer and dropout to the maximum pooling layer) to address the problem of overfitting in small-sample classification. The proposed network has an optimal sample window for classification, and the window size is related to the area and distribution of the study area. After performing dimensionality reduction using principal component analysis, the time required for training using hyperspectral images shortened significantly, and the test accuracy increased drastically. Furthermore, when the size of the sample window was 27 × 27 after dimensionality reduction, the overall accuracy of forest species classification was 98.53%, and the Kappa coefficient was 0.9838. Therefore, by using an improved prototypical network with a sample window of an appropriate size, the network yielded desirable classification results, thereby demonstrating its suitability for the fine classification and mapping of tree species.


2021 ◽  
Vol 11 (9) ◽  
pp. 3863
Author(s):  
Ali Emre Öztürk ◽  
Ergun Erçelebi

A large amount of training image data is required for solving image classification problems using deep learning (DL) networks. In this study, we aimed to train DL networks with synthetic images generated by using a game engine and determine the effects of the networks on performance when solving real-image classification problems. The study presents the results of using corner detection and nearest three-point selection (CDNTS) layers to classify bird and rotary-wing unmanned aerial vehicle (RW-UAV) images, provides a comprehensive comparison of two different experimental setups, and emphasizes the significant improvements in the performance in deep learning-based networks due to the inclusion of a CDNTS layer. Experiment 1 corresponds to training the commonly used deep learning-based networks with synthetic data and an image classification test on real data. Experiment 2 corresponds to training the CDNTS layer and commonly used deep learning-based networks with synthetic data and an image classification test on real data. In experiment 1, the best area under the curve (AUC) value for the image classification test accuracy was measured as 72%. In experiment 2, using the CDNTS layer, the AUC value for the image classification test accuracy was measured as 88.9%. A total of 432 different combinations of trainings were investigated in the experimental setups. The experiments were trained with various DL networks using four different optimizers by considering all combinations of batch size, learning rate, and dropout hyperparameters. The test accuracy AUC values for networks in experiment 1 ranged from 55% to 74%, whereas the test accuracy AUC values in experiment 2 networks with a CDNTS layer ranged from 76% to 89.9%. It was observed that the CDNTS layer has considerable effects on the image classification accuracy performance of deep learning-based networks. AUC, F-score, and test accuracy measures were used to validate the success of the networks.



Author(s):  
Satyajit Swain ◽  
Anasua Banerjee ◽  
Mainak Bandyopadhyay ◽  
Suresh Chandra Satapathy


Forests ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 818
Author(s):  
Yanbiao Xi ◽  
Chunying Ren ◽  
Zongming Wang ◽  
Shiqing Wei ◽  
Jialing Bai ◽  
...  

The accurate characterization of tree species distribution in forest areas can help significantly reduce uncertainties in the estimation of ecosystem parameters and forest resources. Deep learning algorithms have become a hot topic in recent years, but they have so far not been applied to tree species classification. In this study, one-dimensional convolutional neural network (Conv1D), a popular deep learning algorithm, was proposed to automatically identify tree species using OHS-1 hyperspectral images. Additionally, the random forest (RF) classifier was applied to compare to the algorithm of deep learning. Based on our experiments, we drew three main conclusions: First, the OHS-1 hyperspectral images used in this study have high spatial resolution (10 m), which reduces the influence of mixed pixel effect and greatly improves the classification accuracy. Second, limited by the amount of sample data, Conv1D-based classifier does not need too many layers to achieve high classification accuracy. In addition, the size of the convolution kernel has a great influence on the classification accuracy. Finally, the accuracy of Conv1D (85.04%) is higher than that of RF model (80.61%). Especially for broadleaf species with similar spectral characteristics, such as Manchurian walnut and aspen, the accuracy of Conv1D-based classifier is significantly higher than RF classifier (87.15% and 71.77%, respectively). Thus, the Conv1D-based deep learning framework combined with hyperspectral imagery can efficiently improve the accuracy of tree species classification and has great application prospects in the future.



2018 ◽  
Vol 10 (8) ◽  
pp. 1271 ◽  
Author(s):  
Feng Gao ◽  
Qun Wang ◽  
Junyu Dong ◽  
Qizhi Xu

Hyperspectral image classification has been acknowledged as the fundamental and challenging task of hyperspectral data processing. The abundance of spectral and spatial information has provided great opportunities to effectively characterize and identify ground materials. In this paper, we propose a spectral and spatial classification framework for hyperspectral images based on Random Multi-Graphs (RMGs). The RMG is a graph-based ensemble learning method, which is rarely considered in hyperspectral image classification. It is empirically verified that the semi-supervised RMG deals well with small sample setting problems. This kind of problem is very common in hyperspectral image applications. In the proposed method, spatial features are extracted based on linear prediction error analysis and local binary patterns; spatial features and spectral features are then stacked into high dimensional vectors. The high dimensional vectors are fed into the RMG for classification. By randomly selecting a subset of features to create a graph, the proposed method can achieve excellent classification performance. The experiments on three real hyperspectral datasets have demonstrated that the proposed method exhibits better performance than several closely related methods.



Sebatik ◽  
2020 ◽  
Vol 24 (2) ◽  
pp. 300-306
Author(s):  
Muhamad Jaelani Akbar ◽  
Mochamad Wisuda Sardjono ◽  
Margi Cahyanti ◽  
Ericks Rachmat Swedia

Sayuran merupakan sebutan bagi bahan pangan asal tumbuhan yang biasanya mengandung kadar air tinggi dan dikonsumsi dalam keadaan segar atau setelah diolah secara minimal. Keanekaragaman sayur yang terdapat di dunia menyebabkan keragaman pula dalam pengklasifikasian sayur. Oleh karena itu diperlukan adanya pendekatan digital agar dapat mengenali jenis sayuran dengan cepat dan mudah. Dalam penelitian ini jumlah jenis sayuran yang digunakan sebanyak 7 jenis diantara: brokoli, jagung, kacang panjang, pare, terung ungu, tomat dan kubis. Dataset yang digunakan berjumlah 941 gambar sayur dari 7 jenis sayur, ditambah 131 gambar sayur dari jenis yang tidak terdapat pada dataset, selain itu digunakan 291 gambar selain sayuran. Untuk melakukan klasifikasi jenis sayuran digunakan algoritme Convolutional Neural Network (CNN), yang merupakan salah satu bidang ilmu baru dalam Machine Learning dan berkembang dengan pesat. CNN merupakan salah satu algoritme yang terdapat pada metode Deep Learning dengan memiliki kemampuan yang baik dalam Computer Vision, salah satunya yaitu image classification atau klasifikasi objek citra. Uji coba dilakukan pada lima perangkat selular berbasiskan sistem operasi Android. Python digunakan sebagai bahasa pemrograman dalam merancang aplikasi mobile ini dengan menggunakan modul Tensor flow untuk melakukan training dan testing data. Metode yang dapat digunakan dalam melakukan klasifikasi citra ini yaitu Convolutional Neural Network (CNN). Hasil final test accuracy yang diperoleh yaitu didapat keakuratan mengenali jenis sayuran sebesar 98.1% dengan salah satu hasil pengujian yaitu klasifikasi sayur jagung dengan akurasi sebesar 99.98049%.



2020 ◽  
Vol 12 (23) ◽  
pp. 3879
Author(s):  
Guangxing Wang ◽  
Peng Ren

Deep learning classifiers exhibit remarkable performance for hyperspectral image classification given sufficient labeled samples but show deficiency in the situation of learning with limited labeled samples. Active learning endows deep learning classifiers with the ability to alleviate this deficiency. However, existing active deep learning methods tend to underestimate the feature variability of hyperspectral images when querying informative unlabeled samples subject to certain acquisition heuristics. A major reason for this bias is that the acquisition heuristics are normally derived based on the output of a deep learning classifier, in which representational power is bounded by the number of labeled training samples at hand. To address this limitation, we developed a feature-oriented adversarial active learning (FAAL) strategy, which exploits the high-level features from one intermediate layer of a deep learning classifier for establishing an acquisition heuristic based on a generative adversarial network (GAN). Specifically, we developed a feature generator for generating fake high-level features and a feature discriminator for discriminating between the real high-level features and the fake ones. Trained with both the real and the fake high-level features, the feature discriminator comprehensively captures the feature variability of hyperspectral images and yields a powerful and generalized discriminative capability. We leverage the well-trained feature discriminator as the acquisition heuristic to measure the informativeness of unlabeled samples. Experimental results validate the effectiveness of both (i) the full FAAL framework and (ii) the adversarially learned acquisition heuristic, for the task of classifying hyperspectral images with limited labeled samples.



2021 ◽  
Vol 13 (7) ◽  
pp. 1269
Author(s):  
Long Chen ◽  
Xiaomin Tian ◽  
Guoqi Chai ◽  
Xiaoli Zhang ◽  
Erxue Chen

High-precision automatic identification and mapping of forest tree species composition is an important content of forest resource survey and monitoring. The airborne hyperspectral image contains rich spectral and spatial information, which provides the possibility of high-precision classification and mapping of forest tree species. Few-shot learning, as an application of deep learning, has become an effective method of image classification. Prototypical networks (P-Net) is a simple and practical deep learning network, which has significant advantages in solving few-shot classification problems. Considering the high band correlation and large data volume associated with airborne hyperspectral images, how to fully extract effective features, filter or reduce redundant features is the key to improving the classification accuracy of P-Net, in order to extract effective features in hyperspectral images and obtain a high-precision forest tree species classification model with limited samples. In this research, we embedded the convolutional block attention module (CBAM) between the convolution blocks of P-Net, the CBAM-P-Net was constructed, and a method to improve the feature extraction efficiency of the P-Net was proposed, although this method makes the network more complex and increases the computational cost to a certain extent. The results show that the combination strategy using Channel First for CBAM greatly improves the feature extraction efficiency of the model. In different sample windows, CBAM-P-Net has an average increase of 1.17% and 0.0129 in testing overall accuracy (OA) and kappa coefficient (Kappa). The optimal classification window is 17×17, the OA reaches 97.28%, and Kappa reaches 0.97, which is an increase of 1.95% and 0.0214 along with just 49 s of training time expended, respectively, compared with P-Net. Therefore, using a suitable sample window and applying the proposed CBAM-P-Net to classify airborne hyperspectral images can achieve high-precision classification and mapping of forest tree species.



Sebatik ◽  
2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Hanissa Anggraini Pratiwi ◽  
Margi Cahyanti ◽  
Missa Lamsani

Bunga atau kembang adalah alat reproduksi seksual pada tumbuhan berbunga. Pada bunga terdapat organ reproduksi, yaitu benang sari dan putik. Pada beberapa spesies, bunga majemuk dapat dianggap awam sebagai bunga (tunggal), ada sekitar 391.000 spesies tanaman vaskular yang saat ini diketahui sains, dimana sekitar 369.000 spesies (atau 94 persen) adalah tanaman berbunga. Klasifikasi jenis bunga merupakan pekerjaan yang membutuhkan waktu dan pengetahuan. Perkembangan visi komputer memungkinkan otomatisasi klasifikasi jenis bunga dengan efisien dan akurat. Deep Learning merupakan cabang ilmu machine learning berbasis Jaringan Saraf Tiruan (JST) atau bisa dikatakan sebagai perkembangan dari JST. Dalam Deep Learning, sebuah komputer belajar mengklasifikasi secara langsung dari gambar atau suara. Dengan menggunakan teknologi Deep Learning yang merupakan salah satu bidang ilmu baru dalam Machine learning dan berkembang dengan sangat pesat. Deep Learning memiliki kemampuan yang baik dalam Computer Vision, yaitu Image Classification atau kalsifikasi objek pada citra dalam bentuk dua dimensi misalnya gambar dan suara. Hasil final test accuracy yang diperoleh yaitu didapat keakuratan sebesar 100% dengan salah satu hasil pengujian yaitu klasifikasi bunga mawar  dengan akurasi sebesar 99,30%. Model data latih menggunakan dengan total dataset 460 gambar (yang diambil melalui pencarian gambar pada Google Image) sebanyak 30 kali dilatih, di mana setiap 13 langkah terhitung 1 training. Sehingga menghasilkan keluaran nilai akurasi dari data yang telah dilatih (val_acc) dan nilai akurasi dari data yang hilang atau miss (val_loss). Diharapkan dengan adanya implementasi aplikasi ini dapat membantu pengguna untuk memelihara bunga hias dengan jenis sesuai dengan keinginan.



2019 ◽  
Vol 2 (1) ◽  
pp. 182-186
Author(s):  
Santosh Giri

Deep learning is one of the essential parts of machine learning. Applications such as image classification, text recognition, object detection etc. used deep learning architectures. In this paper neural network model was designed for image classification. A NN classifier with one fully connected layer and one softmax layer was designed and feature extraction part of inception v3 model was reused to calculate the feature value of each images. And by using these feature values the NN classifier was trained. By adopting transfer learning mechanism NN classifier was trained with 17 classes of oxford 17 flower image dataset. The system provided final training accuracy of 99 %. After training, system was evaluated with testing dataset images. The mean testing accuracy was 86.4%.



Author(s):  
Jing Liang ◽  
Pengshuai Li ◽  
Hui Zhao ◽  
Lu Han ◽  
Mingliang Qu


Sign in / Sign up

Export Citation Format

Share Document