scholarly journals Simulation-Based Evaluation of the Estimation Methods of Far-Red Solar-Induced Chlorophyll Fluorescence Escape Probability in Discontinuous Forest Canopies

2020 ◽  
Vol 12 (23) ◽  
pp. 3962
Author(s):  
Weiwei Liu ◽  
Shezhou Luo ◽  
Xiaoliang Lu ◽  
Jon Atherton ◽  
Jean-Philippe Gastellu-Etchegorry

The escape probability of Solar-induced chlorophyll fluorescence (SIF) can be remotely estimated using reflectance measurements based on spectral invariants theory. This can then be used to correct the effects of canopy structure on canopy-leaving SIF. However, the feasibility of these estimation methods is untested in heterogeneous vegetation such as the discontinuous forest canopy layer under evaluation here. In this study, the Discrete Anisotropic Radiative Transfer (DART) model is used to simulate canopy-leaving SIF, canopy total emitted SIF, canopy interceptance, and the fraction of absorbed photosynthetically active radiation (fAPAR) in order to evaluate the estimation methods of SIF escape probability in discontinuous forest canopies. Our simulation results show that the normalized difference vegetation index (NDVI) can be used to partly eliminate the effects of background reflectance on the estimation of SIF escape probability in most cases, but fails to produce accurate estimations if the background is partly or totally covered by vegetation. We also found that SIF escape probabilities estimated at a high solar zenith angle have better estimation accuracy than those estimated at a lower solar zenith angle. Our results show that additional errors will be introduced to the estimation of SIF escape probability with the use of satellite products, especially when the product of leaf area index (LAI) and clumping index (CI) was underestimated. In other results, fAPAR has comparable estimation accuracy of SIF escape probability when compared to canopy interceptance. Additionally, fAPAR for the entire canopy has better estimation accuracy of SIF escape probability than fPAR for leaf only in sparse forest canopies. These results help us to better understand the current estimation results of SIF escape probability based on spectral invariants theory, and to improve its estimation accuracy in discontinuous forest canopies.

2021 ◽  
Vol 13 (4) ◽  
pp. 803
Author(s):  
Lingchen Lin ◽  
Kunyong Yu ◽  
Xiong Yao ◽  
Yangbo Deng ◽  
Zhenbang Hao ◽  
...  

As a key canopy structure parameter, the estimation method of the Leaf Area Index (LAI) has always attracted attention. To explore a potential method to estimate forest LAI from 3D point cloud at low cost, we took photos from different angles of the drone and set five schemes (O (0°), T15 (15°), T30 (30°), OT15 (0° and 15°) and OT30 (0° and 30°)), which were used to reconstruct 3D point cloud of forest canopy based on photogrammetry. Subsequently, the LAI values and the leaf area distribution in the vertical direction derived from five schemes were calculated based on the voxelized model. Our results show that the serious lack of leaf area in the middle and lower layers determines that the LAI estimate of O is inaccurate. For oblique photogrammetry, schemes with 30° photos always provided better LAI estimates than schemes with 15° photos (T30 better than T15, OT30 better than OT15), mainly reflected in the lower part of the canopy, which is particularly obvious in low-LAI areas. The overall structure of the single-tilt angle scheme (T15, T30) was relatively complete, but the rough point cloud details could not reflect the actual situation of LAI well. Multi-angle schemes (OT15, OT30) provided excellent leaf area estimation (OT15: R2 = 0.8225, RMSE = 0.3334 m2/m2; OT30: R2 = 0.9119, RMSE = 0.1790 m2/m2). OT30 provided the best LAI estimation accuracy at a sub-voxel size of 0.09 m and the best checkpoint accuracy (OT30: RMSE [H] = 0.2917 m, RMSE [V] = 0.1797 m). The results highlight that coupling oblique photography and nadiral photography can be an effective solution to estimate forest LAI.


2020 ◽  
Vol 12 (13) ◽  
pp. 2083
Author(s):  
Siyuan Chen ◽  
Liangyun Liu ◽  
Xue He ◽  
Zhigang Liu ◽  
Dailiang Peng

The fraction of absorbed photosynthetically active radiation (FAPAR) is an essential climate variable (ECV) widely used for various ecological and climate models. However, all the current FAPAR satellite products correspond to instantaneous FAPAR values acquired at the satellite transit time only, which cannot represent the variations in photosynthetic processes over the diurnal period. Most studies have directly used the instantaneous FAPAR as a reasonable approximation of the daily integrated value. However, clearly, FAPAR varies a lot according to the weather conditions and amount of incoming radiation. In this paper, a temporal upscaling method based on the cosine of the solar zenith angle (SZA) at local noon ( c o s ( S Z A n o o n ) ) is proposed for converting instantaneous FAPAR to daily integrated FAPAR. First, the diurnal variations in FAPAR were investigated using PROSAIL (a model of Leaf Optical Properties Spectra (PROSPECT) integrating a canopy radiative transfer model (Scattering from Arbitrarily Inclined Leaves, SAIL)) simulations with different leaf area index (LAI) values corresponding to different latitudes. It was found that the instantaneous black sky FAPAR at 09:30 AM provided a good approximation for the daily integrated black sky FAPAR; this gave the highest correlation (R2 = 0.995) and lowest Root Mean Square Error (RMSE = 0.013) among the instantaneous black sky FAPAR values observed at different times. Secondly, the difference between the instantaneous black sky FAPAR values acquired at different times and the daily integrated black sky FAPAR was analyzed; this could be accurately modelled using the cosine value of solar zenith angle at local noon ( c o s ( S Z A n o o n ) ) for a given vegetation scene. Therefore, a temporal upscaling method for typical satellite products was proposed using a cos(SZA)-based upscaling model. Finally, the proposed cos(SZA)-based upscaling model was validated using both the PROSAIL simulated data and the field measurements. The validated results indicated that the upscaled daily black sky FAPAR was highly consistent with the daily integrated black sky FAPAR, giving very high mean R2 values (0.998, 0.972), low RMSEs (0.007, 0.014), and low rMAEs (0.596%, 1.378%) for the simulations and the field measurements, respectively. Consequently, the cos(SZA)-based method performs well for upscaling the instantaneous black sky FAPAR to its daily value, which is a simple but extremely important approach for satellite remote sensing applications related to FAPAR.


2018 ◽  
Vol 10 (8) ◽  
pp. 1297 ◽  
Author(s):  
Jie Zou ◽  
Yinguo Zhuang ◽  
Francesco Chianucci ◽  
Chunna Mai ◽  
Weimu Lin ◽  
...  

Optical methods require model inversion to infer plant area index (PAI) and woody area index (WAI) of leaf-on and leaf-off forest canopy from gap fraction or radiation attenuation measurements. Several inversion models have been developed previously, however, a thorough comparison of those inversion models in obtaining the PAI and WAI of leaf-on and leaf-off forest canopy has not been conducted so far. In the present study, an explicit 3D forest scene series with different PAI, WAI, phenological periods, stand density, tree species composition, plant functional types, canopy element clumping index, and woody component clumping index was generated using 50 detailed 3D tree models. The explicit 3D forest scene series was then used to assess the performance of seven commonly used inversion models to estimate the PAI and WAI of the leaf-on and leaf-off forest canopy. The PAI and WAI estimated from the seven inversion models and simulated digital hemispherical photography images were compared with the true PAI and WAI of leaf-on and leaf-off forest scenes. Factors that contributed to the differences between the estimates of the seven inversion models were analyzed. Results show that both the factors of inversion model, canopy element and woody component projection functions, canopy element and woody component estimation algorithms, and segment size are contributed to the differences between the PAI and WAI estimated from the seven inversion models. There is no universally valid combination of inversion model, needle-to-shoot area ratio, canopy element and woody component clumping index estimation algorithm, and segment size that can accurately measure the PAI and WAI of all leaf-on and leaf-off forest canopies. The performance of the combinations of inversion model, needle-to-shoot area ratio, canopy element and woody component clumping index estimation algorithm, and segment size to estimate the PAI and WAI of leaf-on and leaf-off forest canopies is the function of the inversion model as well as the canopy element and woody component clumping index estimation algorithm, segment size, PAI, WAI, tree species composition, and plant functional types. The impact of canopy element and woody component projection function measurements on the PAI and WAI estimation of the leaf-on and leaf-off forest canopy can be reduced to a low level (<4%) by adopting appropriate inversion models.


2021 ◽  
Vol 13 (6) ◽  
pp. 1091
Author(s):  
Chiming Tong ◽  
Yunfei Bao ◽  
Feng Zhao ◽  
Chongrui Fan ◽  
Zhenjiang Li ◽  
...  

Solar-induced chlorophyll fluorescence (SIF) has been used as an indicator for the photosynthetic activity of vegetation at regional and global scales. Canopy structure affects the radiative transfer process of SIF within canopy and causes the angular-dependencies of SIF. A common solution for interpreting these effects is the use of physically-based radiative transfer models. As a first step, a comprehensive evaluation of the three-dimensional (3D) radiative transfers is needed using ground truth biological and hyperspectral remote sensing measurements. Due to the complexity of forest modeling, few studies have systematically investigated the effect of canopy structural factors and sun-target-viewing geometry on SIF. In this study, we evaluated the capability of the Fluorescence model with the Weighted Photon Spread method (FluorWPS) to simulate at-sensor radiance and SIF at the top of canopy, and identified the influence of the canopy structural factors and sun-target-viewing geometry on the magnitude and directional response of SIF in deciduous forests. To evaluate the model, a 3D forest scene was first constructed from Goddard’s LiDAR Hyperspectral and Thermal (G-LiHT) LiDAR data. The reliability of the reconstructed scene was confirmed by comparing the calculated leaf area index with the measured ones from the scene, which resulted in a relative error of 3.5%. Then, the performance of FluorWPS was evaluated by comparing the simulated at-sensor radiance spectra with the spectra measured from the DUAL and FLUO spectrometer of HyPlant. The radiance spectra simulated by FluorWPS agreed well with the measured spectra by the two high-performance imaging spectrometers, with a coefficient of determination (R2) of 0.998 and 0.926, respectively. SIF simulated by the FluorWPS model agreed well with the values of the DART model. Furthermore, a sensitivity analysis was conducted to assess the effect of the canopy structural parameters and sun-target-viewing geometry on SIF. The maximum difference of the total SIF can be as large as 45% and 47% at the wavelengths of 685 nm and 740 nm for different foliage area volume densities (FAVDs), and 48% and 46% for fractional vegetation covers (FVCs), respectively. Leaf angle distribution has a markedly influence on the magnitude of SIF, with a ratio of emission part to SIF range from 0.48 to 0.72. SIF from the grass layer under the tree contributed 10%+ more to the top of canopy SIF even for a dense forest canopy (FAVD = 3.5 m−1, FVC = 76%). The red SIF at the wavelength of 685 nm had a similar shape to the far-red SIF at a wavelength of 740 nm but with higher variability in varying illumination conditions. The integration of the FluorWPS model and LiDAR modeling can greatly improve the interpretation of SIF at different scales and angular configurations.


2020 ◽  
Vol 12 (16) ◽  
pp. 2559 ◽  
Author(s):  
Yuzhen Zhang ◽  
Shunlin Liang

Many advanced satellite estimation methods have been developed, but global forest aboveground biomass (AGB) products remain largely uncertain. In this study, we explored data fusion techniques to generate a global forest AGB map for the 2000s at 0.01-degree resolution with improved accuracy by integrating ten existing local or global maps. The error removal and simple averaging algorithm, which is efficient and makes no assumption about the data and associated errors, was proposed to integrate these ten forest AGB maps. We first compiled the global reference AGB from in situ measurements and high-resolution AGB data that were originally derived from field data and airborne lidar data and determined the errors of each forest AGB map at the pixels with corresponding reference AGB values. Based on the errors determined from reference AGB data, the pixel-by-pixel errors associated with each of the ten AGB datasets were estimated from multiple predictors (e.g., leaf area index, forest canopy height, forest cover, land surface elevation, slope, temperature, and precipitation) using the random forest algorithm. The estimated pixel-by-pixel errors were then removed from the corresponding forest AGB datasets, and finally, global forest AGB maps were generated by combining the calibrated existing forest AGB datasets using the simple averaging algorithm. Cross-validation using reference AGB data showed that the accuracy of the fused global forest AGB map had an R-squared of 0.61 and a root mean square error (RMSE) of 53.68 Mg/ha, which is better than the reported accuracies (R-squared of 0.56 and RMSE larger than 80 Mg/ha) in the literature. Intercomparison with previous studies also suggested that the fused AGB estimates were much closer to the reference AGB values. This study attempted to integrate existing forest AGB datasets for generating a global forest AGB map with better accuracy and moved one step forward for our understanding of the global terrestrial carbon cycle by providing improved benchmarks of global forest carbon stocks.


2021 ◽  
Vol 42 (11) ◽  
pp. 4224-4240
Author(s):  
Gyuyeon Kim ◽  
Yong-Sang Choi ◽  
Sang Seo Park ◽  
Jhoon Kim

2021 ◽  
Vol 20 (2) ◽  
pp. 265-274
Author(s):  
Angela C. G. B. Leal ◽  
Marcelo P. Corrêa ◽  
Michael F. Holick ◽  
Enaldo V. Melo ◽  
Marise Lazaretti-Castro

Sign in / Sign up

Export Citation Format

Share Document