scholarly journals Effect of the Illumination Angle on NDVI Data Composed of Mixed Surface Values Obtained over Vertical-Shoot-Positioned Vineyards

2021 ◽  
Vol 13 (5) ◽  
pp. 855
Author(s):  
Pedro C. Towers ◽  
Carlos Poblete-Echeverría

Accurate quantification of the spatial variation of canopy size is crucial for vineyard management in the context of Precision Viticulture. Biophysical parameters associated with canopy size, such as Leaf Area Index (LAI), can be estimated from Vegetation Indices (VI) such as the Normalized Difference Vegetation Index (NDVI), but in Vertical-Shoot-Positioned (VSP) vineyards, common satellite, or aerial imagery with moderate-resolution capture information at nadir of pixels whose values are a mix of canopy, sunlit soil, and shaded soil fractions and their respective spectral signatures. VI values for each fraction are considerably different. On a VSP vineyard, the illumination direction for each specific row orientation depends on the relative position of sun and earth. Respective proportions of shaded and sunlit soil fractions change as a function of solar elevation and azimuth, but canopy fraction is independent of these variations. The focus of this study is the interaction of illumination direction with canopy orientation, and the corresponding effect on integrated NDVI. The results confirm that factors that intervene in determining the direction of illumination on a VSP will alter the integrated NDVI value. Shading induced considerable changes in the NDVI proportions affecting the final integrated NDVI value. However, the effect of shading decreases as the row orientation approaches the solar path. Therefore, models of biophysical parameters using moderate-resolution imagery should consider corrections for variations caused by factors affecting the angle of illumination to provide more general solutions that may enable canopy data to be obtained from mixed, integrated vine NDVI.

2021 ◽  
Vol 13 (4) ◽  
pp. 719
Author(s):  
Xiuxia Li ◽  
Shunlin Liang ◽  
Huaan Jin

Leaf area index (LAI) and normalized difference vegetation index (NDVI) are key parameters for various applications. However, due to sensor tradeoff and cloud contaminations, these data are often temporally intermittent and spatially discontinuous. To address the discontinuities, this study proposed a method based on spectral matching of 30 m discontinuous values from Landsat data and 500 m temporally continuous values from Moderate-resolution Imaging Spectroradiometer (MODIS) data. Experiments have proven that the proposed method can effectively yield spatiotemporally continuous vegetation products at 30 m spatial resolution. The results for three different study areas with NDVI and LAI showed that the method performs well in restoring the time series, fills in the missing data, and reasonably predicts the images. Remarkably, the proposed method could address the issue when no cloud-free data pairs are available close to the prediction date, because of the temporal information “borrowed” from coarser resolution data. Hence, the proposed method can make better use of partially obscured images. The reconstructed spatiotemporally continuous data have great potential for monitoring vegetation, agriculture, and environmental dynamics.


2019 ◽  
Vol 11 (15) ◽  
pp. 1823 ◽  
Author(s):  
Xiaojuan Huang ◽  
Jingfeng Xiao ◽  
Mingguo Ma

Satellite-derived vegetation indices (VIs) have been widely used to approximate or estimate gross primary productivity (GPP). However, it remains unclear how the VI-GPP relationship varies with indices, biomes, timescales, and the bidirectional reflectance distribution function (BRDF) effect. We examined the relationship between VIs and GPP for 121 FLUXNET sites across the globe and assessed how the VI-GPP relationship varied among a variety of biomes at both monthly and annual timescales. We used three widely-used VIs: normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), and 2-band EVI (EVI2) as well as a new VI - NIRV and used surface reflectance both with and without BRDF correction from the moderate resolution imaging spectroradiometer (MODIS) to calculate these indices. The resulting traditional (NDVI, EVI, EVI2, and NIRV) and BRDF-corrected (NDVIBRDF, EVIBRDF, EVI2BRDF, and NIRV, BRDF) VIs were used to examine the VI-GPP relationship. At the monthly scale, all VIs were moderate or strong predictors of GPP, and the BRDF correction improved their performance. EVI2BRDF and NIRV, BRDF had similar performance in capturing the variations in tower GPP as did the MODIS GPP product. The VIs explained lower variance in tower GPP at the annual scale than at the monthly scale. The BRDF-correction of surface reflectance did not improve the VI-GPP relationship at the annual scale. The VIs had similar capability in capturing the interannual variability in tower GPP as MODIS GPP. VIs were influenced by temperature and water stresses and were more sensitive to temperature stress than to water stress. VIs in combination with environmental factors could improve the prediction of GPP than VIs alone. Our findings can help us better understand how the VI-GPP relationship varies among indices, biomes, and timescales and how the BRDF effect influences the VI-GPP relationship.


Author(s):  
D. Ratha ◽  
D. Mandal ◽  
S. Dey ◽  
A. Bhattacharya ◽  
A. Frery ◽  
...  

Abstract. In this paper, we present two radar vegetation indices for full-pol and compact-pol SAR data, respectively. Both are derived using the notion of a geodesic distance between observation and well-known scattering models available in the literature. While the full-pol version depends on a generalized volume scattering model, the compact-pol version uses the ideal depolariser to model the randomness in the vegetation. We have utilized the RADARSAT Constellation Mission (RCM) time-series data from the SAMPVEX16-MB campaign in the Manitoba region of Canada for comparing and assessing the indices in terms of the change in the biophysical parameters as well. The compact-pol data for comparison is simulated from the full-pol RCM time series. Both the indices show better performance at correlating with biophysical parameters such as Plant Area Index (PAI) and Volumetric Water Content (VWC) for wheat and soybean crops, in comparison to the state-of-art Radar Vegetation Index (RVI) of Kim and van Zyl. These indices are timely for the upcoming release of the data from the RCM, which will provide data in both full and compact-pol modes, aimed at better crop monitoring from space.


2020 ◽  
Vol 12 (12) ◽  
pp. 1979
Author(s):  
Dandan Xu ◽  
Deshuai An ◽  
Xulin Guo

Leaf area index (LAI) is widely used for algorithms and modelling in the field of ecology and land surface processes. At a global scale, normalized difference vegetation index (NDVI) products generated by different remote sensing satellites, have provided more than 40 years of time series data for LAI estimation. NDVI saturation issues are reported in agriculture and forest ecosystems at high LAI values, creating a challenge when using NDVI to estimate LAI. However, NDVI saturation is not reported on LAI estimation in grasslands. Previous research implies that non-photosynthetic vegetation (NPV) reduces the accuracy of LAI estimation from NDVI and other vegetation indices. A question arises: is the absence of NDVI saturation in grasslands a result of low LAI value, or is it caused by NPV? This study aims to explore whether there is an NDVI saturation issue in mixed grassland, and how NPV may influence LAI estimation by NDVI. In addition, in-situ measured plant area index (PAI) by sensors that detect light interception through the vegetation canopy (e.g., Li-cor LAI-2000), the most widely used field LAI collection method, might create bias in LAI estimation or validation using NDVI. Thus, this study also aims to quantify the contribution of green vegetation (GV) and NPV on in-situ measured PAI. The results indicate that NDVI saturation (using the portion of NDVI only contributed by GV) exists in grassland at high LAI (LAI threshold is much lower than that reported for other ecosystems in the literature), and that the presence of NPV can override the saturation effects of NDVI used to estimate green LAI. The results also show that GV and NPV in mixed grassland explain, respectively, the 60.33% and 39.67% variation of in-situ measured PAI by LAI-2000.


2005 ◽  
Vol 62 (3) ◽  
pp. 199-207 ◽  
Author(s):  
Maurício dos Santos Simões ◽  
Jansle Vieira Rocha ◽  
Rubens Augusto Camargo Lamparelli

Spectral information is well related with agronomic variables and can be used in crop monitoring and yield forecasting. This paper describes a multitemporal research with the sugarcane variety SP80-1842, studying its spectral behavior using field spectroscopy and its relationship with agronomic parameters such as leaf area index (LAI), number of stalks per meter (NPM), yield (TSS) and total biomass (BMT). A commercial sugarcane field in Araras/SP/Brazil was monitored for two seasons. Radiometric data and agronomic characterization were gathered in 9 field campaigns. Spectral vegetation indices had similar patterns in both seasons and adjusted to agronomic parameters. Band 4 (B4), Simple Ratio (SR), Normalized Difference Vegetation Index (NDVI), and Soil Adjusted Vegetation Index (SAVI) increased their values until the end of the vegetative stage, around 240 days after harvest (DAC). After that stage, B4 reflectance and NDVI values began to stabilize and decrease because the crop reached ripening and senescence stages. Band 3 (B3) and RVI presented decreased values since the beginning of the cycle, followed by a stabilization stage. Later these values had a slight increase caused by the lower amount of green vegetation. Spectral variables B3, RVI, NDVI, and SAVI were highly correlated (above 0.79) with LAI, TSS, and BMT, and about 0.50 with NPM. The best regression models were verified for RVI, LAI, and NPM, which explained 0.97 of TSS variation and 0.99 of BMT variation.


2020 ◽  
Vol 12 (7) ◽  
pp. 1207 ◽  
Author(s):  
Jian Zhang ◽  
Chufeng Wang ◽  
Chenghai Yang ◽  
Tianjin Xie ◽  
Zhao Jiang ◽  
...  

The spatial resolution of in situ unmanned aerial vehicle (UAV) multispectral images has a crucial effect on crop growth monitoring and image acquisition efficiency. However, existing studies about optimal spatial resolution for crop monitoring are mainly based on resampled images. Therefore, the resampled spatial resolution in these studies might not be applicable to in situ UAV images. In order to obtain optimal spatial resolution of in situ UAV multispectral images for crop growth monitoring, a RedEdge Micasense 3 camera was installed onto a DJI M600 UAV flying at different heights of 22, 29, 44, 88, and 176m to capture images of seedling rapeseed with ground sampling distances (GSD) of 1.35, 1.69, 2.61, 5.73, and 11.61 cm, respectively. Meanwhile, the normalized difference vegetation index (NDVI) measured by a GreenSeeker (GS-NDVI) and leaf area index (LAI) were collected to evaluate the performance of nine vegetation indices (VIs) and VI*plant height (PH) at different GSDs for rapeseed growth monitoring. The results showed that the normalized difference red edge index (NDRE) had a better performance for estimating GS-NDVI (R2 = 0.812) and LAI (R2 = 0.717), compared with other VIs. Moreover, when GSD was less than 2.61 cm, the NDRE*PH derived from in situ UAV images outperformed the NDRE for LAI estimation (R2 = 0.757). At oversized GSD (≥5.73 cm), imprecise PH information and a large heterogeneity within the pixel (revealed by semi-variogram analysis) resulted in a large random error for LAI estimation by NDRE*PH. Furthermore, the image collection and processing time at 1.35 cm GSD was about three times as long as that at 2.61 cm. The result of this study suggested that NDRE*PH from UAV multispectral images with a spatial resolution around 2.61 cm could be a preferential selection for seedling rapeseed growth monitoring, while NDRE alone might have a better performance for low spatial resolution images.


2021 ◽  
Vol 13 (4) ◽  
pp. 568
Author(s):  
David Andrés Rivas-Tabares ◽  
Antonio Saa-Requejo ◽  
Juan José Martín-Sotoca ◽  
Ana María Tarquis

Vegetation indices time series analysis is increasingly improved for characterizing agricultural land processes. However, this is challenging because of the multeity of factors affecting vegetation growth. In semiarid regions the rainfall, the soil properties and climate are strongly correlated with crop growth. These relationships are commonly analyzed using the normalized difference vegetation index (NDVI). NDVI series from two sites, belonging to different agroclimatic zones, were examined, decomposing them into the overall average pattern, residuals, and anomalies series. All of them were studied by applying the concept of the generalized Hurst exponent. This is derived from the generalized structure function, which characterizes the series’ scaling properties. The cycle pattern of NDVI series from both zones presented differences that could be explained by the differences in the climatic precipitation pattern and soil characteristics. The significant differences found in the soil reflectance bands confirm the differences in both sites. The scaling properties of NDVI original series were confirmed with Hurst exponents higher than 0.5 showing a persistent structure. The opposite was found when analyzing the residual and the anomaly series with a stronger anti-persistent character. These findings reveal the influences of soil–climate interactions in the dynamic of NDVI series of rainfed cereals in the semiarid.


2021 ◽  
Author(s):  
Gustau Camps-Valls ◽  
Manuel Campos-Taberner ◽  
Alvaro Moreno-Martinez ◽  
Sophia Walther ◽  
Grégory Duveiller ◽  
...  

<p>Vegetation indices are the most widely used tool in remote sensing and multispectral imaging applications. This paper introduces a nonlinear generalization of the broad family of vegetation indices based on spectral band differences and ratios. The presented indices exploit all higher-order relations of the involved spectral channels, are easy to derive and use, and give some insight on problem complexity. The framework is illustrated to generalize the widely adopted Normalized Difference Vegetation Index (NDVI). Its nonlinear generalization named, kernel NDVI (kNDVI), largely improves performance over NDVI and the recent NIRv in monitoring key vegetation parameters, showing much higher correlation with independent products, such as the MODIS leaf area index (LAI), flux tower gross primary productivity (GPP), and GOME-2 sun-induced fluorescence. The family of indices constitutes a valuable choice for many applications that require spatially explicit and time-resolved analysis of Earth observation data.</p><p><span> Reference: <strong>"<span>A Unified Vegetation Index for Quantifying the Terrestrial Biosphere</span>"</strong>, </span><span>Gustau Camps-Valls, Manuel Campos-Taberner, Álvaro Moreno-Martı́nez, Sophia Walther, Grégory Duveiller, Alessandro Cescatti, Miguel Mahecha, Jordi Muñoz-Marı́, Francisco Javier Garcı́a-Haro, Luis Guanter, John Gamon, Martin Jung, Markus Reichstein, Steven W. Running. </span><em><span><span>Science Advances, in press</span></span><span>, </span> <span>2021</span> </em></p>


2017 ◽  
Vol 8 (2) ◽  
pp. 569-573 ◽  
Author(s):  
I. Nadav ◽  
A. Schweitzer

Vineyards worldwide are subjected to spatial variability, which can be exhibited in both low and high yield areas. We developed a variable rate drip irrigation (VRDI) concept to reduce such variability. The VRDI system divides the vineyard into 30×30-meter irrigation zones, enabling individual irrigation of each zone according to normalized difference vegetation index (NDVI) maps. The first VDRI system was installed in on a 1.2-hectare vineyard Syrah red grape in Israel. With the VRDI system, the yield, leaf area index (LAI), canopy size, water potential, and primary juice chemical analysis results were very uniformed in comparison to previous years without the system.


Sign in / Sign up

Export Citation Format

Share Document