scholarly journals Accuracy Evaluation of CFOSAT SWIM L2 Products Based on NDBC Buoy and Jason-3 Altimeter Data

2021 ◽  
Vol 13 (5) ◽  
pp. 887
Author(s):  
Guozhou Liang ◽  
Jungang Yang ◽  
Jichao Wang

Chinese-French Oceanography Satellite (CFOSAT), the first satellite which can observe global ocean wave and wind synchronously, was successfully launched On 29 October 2018. The CFOSAT carries SWIM that can observe ocean wave on a global scale. Based on National Data Buoy Center (NDBC) buoys and Jason-3 altimeter data, this study evaluated the accuracy of L2 level products of CFOSAT SWIM from August 2019 to September 2020. The results show that the accuracy of the nadir Significant Wave Height (SWH) data of the SWIM wave spectrometer is good. Compared with the data of the NDBC buoys and Jason-3 altimeter, the RMSE of the nadir box SWH were 0.39 and 0.21 m, respectively. The variation trend of SWH were first increasing and then decreasing with the increasing of the wave height. The precision of off-nadir wave spectrum SWH is not better than nadir box SWH data. Accuracy was evaluated for off-nadir data from August 2019 to June 2020 and after June 2020, respectively. After linear regression correction, the accuracy of off-nadir wave spectrum SWH was improved. The data accuracy evaluation and comparison of different time period showed that the off-nadir wave spectrum SWH accuracy was improved after the data version was updated in June 2020, especially for 6° and 8° wave spectrum. The precision of off-nadir wave spectrum SWH decreases with the increasing of wave height. The accuracy of the dominant wave direction of each wave spectrum is also not very good, and the accuracy of the dominant wave direction of 10° wave spectrum is slightly better than the others. In general, the accuracy of SWIM nadir beam SWH data reaches the high data accuracy of traditional altimeter, while the accuracy of off-nadir wave spectrum SWH is less than that of nadir beam SWH data. The off-nadir SWH data accuracy after June 2020 has been greatly improved.

2009 ◽  
Vol 26 (3) ◽  
pp. 593-614 ◽  
Author(s):  
Jian-Guo Li ◽  
Martin Holt

Abstract The Advanced Synthetic Aperture Radar (ASAR) on board the Envisat satellite is an important resource for observation of global ocean surface wave spectra. However, assessment of this valuable dataset is not straightforward as a result of a lack of other independent ocean wave spectral observations. The radar altimeter (RA-2) on board the same satellite measures ocean wave height at the same time as the ASAR but at a location about 200 km distant. A small number of moored buoys produce one-dimensional (1D) ocean wave spectra but few ASAR spectra fall on the buoy positions in a given period. Indirect comparison of the Envisat ASAR 2D wave spectra with the RA-2 wave heights and 1D spectra of three selected buoys from July 2004 to February 2006 is facilitated by a wave model, which provides coherent spatial and temporal links between these observations. In addition to the conventional significant wave height (SWH), four spectral subrange wave heights (SRWHs) are used to illustrate the spectral characteristics of these observations. A comparison of three Envisat ASAR 2D spectra with the closest model and buoy spectra is also attempted to illustrate the qualities of these different observations and to demonstrate the restrictions to their direct comparison. Results indicate that these three independent observations are in good agreement in terms of SWH, though the Envisat ASAR shows the largest variance. Comparison of SRWHs indicates that the ASAR spectra agree well with buoy and model in moderately long waves, but the ASAR instrument does not resolve high-frequency waves, especially along the satellite track.


2009 ◽  
Vol 39 (11) ◽  
pp. 2800-2819 ◽  
Author(s):  
Georgia D. Kalantzi ◽  
Christine Gommenginger ◽  
Meric Srokosz

Abstract Wave-breaking dissipation is one of the least understood processes implemented in contemporary wave models. Significant effort has been put in its parameterization, but it has not proven to be totally satisfactory, either theoretically or practically. In this work, the WAVEWATCH III (version 2.22; Tolman) wave model is used to evaluate the two wind input/dissipation source term packages that it includes: (i) Wave Model (WAM) cycle 3 (WAMDIG) and (ii) Tolman and Chalikov. Global model outputs were obtained under the same wind forcing for the two dissipation formulations and were collocated in space and time in the north Indian Ocean with Ocean Topography Experiment (TOPEX) altimeter data. The performance of the model was assessed by evaluating the statistical behavior of the collocated datasets. The parameters examined were significant wave height, wind speed, wind direction, wave direction, wave height for fully developed seas, and energy loss due to wave breaking. From the results, the behavior of the input/dissipation formulations in specific wind and wave conditions was identified; that is, the results give insight to the way the two source term packages “work” and how they respond to local wind sea or swell. Specifically, both of the packages were unable to perform adequately during a season when the area can be mostly affected by swell. However, the results confirmed that the examination of only integral spectral wave parameters does not give information on the inherent physical characteristics of the formulations. Further study, on the basis of point spectra, is necessary to examine the formulations’ performance across the wave spectrum.


1972 ◽  
Vol 1 (13) ◽  
pp. 10
Author(s):  
Leon E. Borgman

The random nature of ocean wave records introduces statistical variability into the wave spectrum estimates based on these records. This may cause inaccuracy in subsequent calculations such as the prediction of the primary wave direction or the estimation of structural response. Confidence intervals on such estimates are needed to evaluate whether adequate estimate accuracy has been obtained. The chi-squared confidence interval commonly used for wave spectra is based on the assumption of a Gaussian sea surface. Its applicability for hurrican size waves has been open for question. Therefore, after a brief outline of the relevant statistical relations basic to the chi-squared procedure, wave data from Hurrican Carla is empirically analyzed and compared with the theoretical conclusions. A simulation procedure is used to proceed from the data to probability interval statements. A comparison of these with the correponding chi-squared statements shows the chi-squared relations to be fairly reasonable approximations for spectral estimates averaged over bands of at least eight values. The empirical simulation procedure can be extended to subsequent calculations based on the spectral estimates while the chi-square method encounters difficulty for such problems.


2021 ◽  
Author(s):  
Shanil Persaud

Coastal outfalls that discharge storm water and/or sewerage into bodies of water are part of a collection of critical municipal infrastructure that must be kept functioning properly at all times so as to avoid expensive frequent maintenance and environmental problems. The Green Road costal outfall pipe, located in an embayment on the shores of Lake Ontario in the City of Hamilton, is subject to sediment plugging by waves that transport sediments from an eroding bluff to the east into the study outfall pipe, thereby reducing its hydraulic discharge capacity. To alleviate the problem of outfall blockage, a 1:15 scale undistorted physical (hydraulic) model ws designed and built at the National Water Research Institute (NWRI) to study the performance of a self-scouring outfall (SSO), a structure that utilizes combination of wave run-up slopes, converging walls and steep outlet channels to promote self-cleansing with respect to sediment to prevent direct sediment intrusion into the outfall pipe. A commercial computational fluid dynamics (CFD) model FLUENT, was used to study the internal hydrodynamics of the complex outfall structure. Results from the physical model determined that the performance of the SSO is a function of wave direction, water level, wave height and period, as well as sediment characteristics. Model results indicate that a SSO built on the shores of Lake Ontario would be able to scour a greater amount of sediment in conjunction with a high water level and wave height of 75.07 m and 1.95 m, respectively. A modified SSO design reduced sedimentation on the wave run-up slopes by more than 25% and was 100% effective in preventing direct sediment intrusion. The structure performed exceptionally better than a traditional outfall in terms of sediment handling. Therefore, it is expected a municipality can save a great deal of money on cleanouts by installing a self-scouring outfall to prevent outfall plugging.


2020 ◽  
Vol 8 (11) ◽  
pp. 900
Author(s):  
Yuhan Cao ◽  
Chunyan Li ◽  
Changming Dong

Atmospheric cold front-generated waves play an important role in the air–sea interaction and coastal water and sediment transports. In-situ observations from two offshore stations are used to investigate variations of directional waves in the coastal Louisiana. Hourly time series of significant wave height and peak wave period are examined for data from 2004, except for the summer time between May and August, when cold fronts are infrequent and weak. The intra-seasonal scale variations in the wavefield are significantly affected by the atmospheric cold frontal events. The wave fields and directional wave spectra induced by four selected cold front passages over the coastal Louisiana are discussed. It is found that significant wave height generated by cold fronts coming from the west change more quickly than that by other passing cold fronts. The peak wave direction rotates clockwise during the cold front events. The variability of the directional wave spectrum shows that the largest spectral density is distributed at low frequency in the postfrontal phase associated with migrating cyclones (MC storms) and arctic surges (AS storms).


2014 ◽  
Vol 31 (11) ◽  
pp. 2556-2564 ◽  
Author(s):  
James Foster ◽  
Ning Li ◽  
Kwok Fai Cheung

AbstractOcean waves have a profound impact on navigation, offshore operations, recreation, safety, and the economic vitality of a nation’s maritime and coastal communities. This study demonstrates that ships equipped with geodetic GPS and a radar gauge can provide accurate estimates of sea state. The Research Vessel (R/V) Kilo Moana recorded 1-Hz data for the entire period of a 10-day cruise around the Hawaiian Islands. Solving for precise kinematic positions for the ship and combining these solutions with the ranges from the ship to the sea surface provided by the radar gauge, it was possible to retrieve 1-Hz estimates of the sea surface elevation along the cruise track. Converting these into estimates of significant wave height, strong agreement was found with wave buoy measurements and hindcast wave data. Comparison with buoy data indicates the estimates have errors on the order of 0.22 m, or less than 11% of the wave height. Using wave model predictions of the dominant directions, the data were processed further to correct for the Doppler shift and to estimate the dominant wave period. Although relatively noisy in locations where the predicted wave directions are expected to be poor, in general these estimates also show a good agreement with the wave buoy observations and hindcast wave estimates. A segment of the cruise that formed a circuit allowed for testing the consistency of the ship-based estimates and for determining a dominant wave direction, which was found to agree closely with model predictions.


2010 ◽  
Vol 40 (9) ◽  
pp. 1917-1941 ◽  
Author(s):  
Fabrice Ardhuin ◽  
Erick Rogers ◽  
Alexander V. Babanin ◽  
Jean-François Filipot ◽  
Rudy Magne ◽  
...  

Abstract New parameterizations for the spectral dissipation of wind-generated waves are proposed. The rates of dissipation have no predetermined spectral shapes and are functions of the wave spectrum and wind speed and direction, in a way consistent with observations of wave breaking and swell dissipation properties. Namely, the swell dissipation is nonlinear and proportional to the swell steepness, and dissipation due to wave breaking is nonzero only when a nondimensional spectrum exceeds the threshold at which waves are observed to start breaking. An additional source of short-wave dissipation is introduced to represent the dissipation of short waves due to longer breaking waves. A reduction of the wind-wave generation of short waves is meant to account for the momentum flux absorbed by longer waves. These parameterizations are combined and calibrated with the discrete interaction approximation for the nonlinear interactions. Parameters are adjusted to reproduce observed shapes of directional wave spectra, and the variability of spectral moments with wind speed and wave height. The wave energy balance is verified in a wide range of conditions and scales, from the global ocean to coastal settings. Wave height, peak and mean periods, and spectral data are validated using in situ and remote sensing data. Some systematic defects are still present, but, overall, the parameterizations probably yield the most accurate estimates of wave parameters to date. Perspectives for further improvement are also given.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xi-Yu Xu ◽  
Ke Xu ◽  
Maofei Jiang ◽  
Bingxu Geng ◽  
Lingwei Shi

This article attempts to analyze the influence of the anisotropic effects of the ocean wave surface on SAR altimetry backscatter coefficient (Sigma-0) measurements, which has not been intensively addressed in publications. Data of Sentinel-3A, Cryosat-2, and Jason-3 altimeters allocated by the WW3 numeric wave model were analyzed, and the patterns of Sigma-0 with respect to the wave direction were acquired under ∼2 m significant wave height. The ocean waves were classified into six categories, among which the moderate swell and short win-wave cases were analyzed intensively. Swell-dominated ocean surface shows less randomness than the wind-wave-dominated ocean surface. Clear and significant sinusoid trends are found in the Sigma-0 and SSB patterns of both operational modes (SAR mode and PLRM mode) of the Sentinel-3A altimeter for the moderate swell case, indicating the sensitivity of Sigma-0 and SSB measurements to the anisotropic features of the altimeter measurements. The anisotropic pattern in the Sentinel-3A PLRM Sigma-0 is somewhat counterintuitive, but the analysis of Jason-3 altimeter data would show similar results. Additionally, by comparing the anisotropic patterns of two orthogonally polarized SAR altimeters (Sentinel-3A and Cryosat-2), we could draw the conclusion that the Sigma-0 measurements are not sensitive to the polarization mode. As for the SSHA patterns, no clear sinusoid could be identified for the moderate swell. A possible explanation is that the SSB pattern may be overwhelmed in the complicated factors that can influence the SSHA pattern.


2007 ◽  
Vol 24 (6) ◽  
pp. 1102-1116 ◽  
Author(s):  
J. Gómez-Enri ◽  
C. P. Gommenginger ◽  
M. A. Srokosz ◽  
P. G. Challenor ◽  
J. Benveniste

For early satellite altimeters, the retrieval of geophysical information (e.g., range, significant wave height) from altimeter ocean waveforms was performed on board the satellite, but this was restricted by computational constraints that limited how much processing could be performed. Today, ground-based retracking of averaged waveforms transmitted to the earth is less restrictive, especially with respect to assumptions about the statistics of ocean waves. In this paper, a theoretical maximum likelihood estimation (MLE) ocean waveform retracker is applied tothe Envisat Radar Altimeter system (RA-2) 18-Hz averaged waveforms under both linear (Gaussian) and nonlinear ocean wave statistics assumptions, to determine whether ocean wave skewness can be sensibly retrieved from Envisat RA-2 waveforms. Results from the MLE retracker used in nonlinear mode provide the first estimates of global ocean wave skewness based on RA-2 Envisat averaged waveforms. These results show for the first time geographically coherent skewness fields and confirm the notion that large values of skewness occur primarily in regions of large significant wave height. Results from the MLE retracker run in linear and nonlinear modes are compared with each other and with the RA-2 Level 2 Sensor Geophysical Data Records (SGDR) products to evaluate the impact of retrieving skewness on other geophysical parameters. Good agreement is obtained between the linear and nonlinear MLE results for both significant wave height and epoch (range), except in areas of high-wave-height conditions.


Sign in / Sign up

Export Citation Format

Share Document