scholarly journals Using Unmanned Aerial Vehicle and Ground-Based RGB Indices to Assess Agronomic Performance of Wheat Landraces and Cultivars in a Mediterranean-Type Environment

2021 ◽  
Vol 13 (6) ◽  
pp. 1187
Author(s):  
Rubén Rufo ◽  
Jose Miguel Soriano ◽  
Dolors Villegas ◽  
Conxita Royo ◽  
Joaquim Bellvert

The adaptability and stability of new bread wheat cultivars that can be successfully grown in rainfed conditions are of paramount importance. Plant improvement can be boosted using effective high-throughput phenotyping tools in dry areas of the Mediterranean basin, where drought and heat stress are expected to increase yield instability. Remote sensing has been of growing interest in breeding programs since it is a cost-effective technology useful for assessing the canopy structure as well as the physiological traits of large genotype collections. The purpose of this study was to evaluate the use of a 4-band multispectral camera on-board an unmanned aerial vehicle (UAV) and ground-based RGB imagery to predict agronomic traits as well as quantify the best estimation of leaf area index (LAI) in rainfed conditions. A collection of 365 bread wheat genotypes, including 181 Mediterranean landraces and 184 modern cultivars, was evaluated during two consecutive growing seasons. Several vegetation indices (VI) derived from multispectral UAV and ground-based RGB images were calculated at different image acquisition dates of the crop cycle. The modified triangular vegetation index (MTVI2) proved to have a good accuracy to estimate LAI (R2 = 0.61). Although the stepwise multiple regression analysis showed that grain yield and number of grains per square meter (NGm2) were the agronomic traits most suitable to be predicted, the R2 were low due to field trials were conducted under rainfed conditions. Moreover, the prediction of agronomic traits was slightly better with ground-based RGB VI rather than with UAV multispectral VIs. NDVI and GNDVI, from multispectral images, were present in most of the prediction equations. Repeated measurements confirmed that the ability of VIs to predict yield depends on the range of phenotypic data. The current study highlights the potential use of VI and RGB images as an efficient tool for high-throughput phenotyping under rainfed Mediterranean conditions.

2020 ◽  
Vol 12 (6) ◽  
pp. 998 ◽  
Author(s):  
GyuJin Jang ◽  
Jaeyoung Kim ◽  
Ju-Kyung Yu ◽  
Hak-Jin Kim ◽  
Yoonha Kim ◽  
...  

Utilization of remote sensing is a new wave of modern agriculture that accelerates plant breeding and research, and the performance of farming practices and farm management. High-throughput phenotyping is a key advanced agricultural technology and has been rapidly adopted in plant research. However, technology adoption is not easy due to cost limitations in academia. This article reviews various commercial unmanned aerial vehicle (UAV) platforms as a high-throughput phenotyping technology for plant breeding. It compares known commercial UAV platforms that are cost-effective and manageable in field settings and demonstrates a general workflow for high-throughput phenotyping, including data analysis. The authors expect this article to create opportunities for academics to access new technologies and utilize the information for their research and breeding programs in more workable ways.


2020 ◽  
Vol 13 (1) ◽  
pp. 84
Author(s):  
Tomoaki Yamaguchi ◽  
Yukie Tanaka ◽  
Yuto Imachi ◽  
Megumi Yamashita ◽  
Keisuke Katsura

Leaf area index (LAI) is a vital parameter for predicting rice yield. Unmanned aerial vehicle (UAV) surveillance with an RGB camera has been shown to have potential as a low-cost and efficient tool for monitoring crop growth. Simultaneously, deep learning (DL) algorithms have attracted attention as a promising tool for the task of image recognition. The principal aim of this research was to evaluate the feasibility of combining DL and RGB images obtained by a UAV for rice LAI estimation. In the present study, an LAI estimation model developed by DL with RGB images was compared to three other practical methods: a plant canopy analyzer (PCA); regression models based on color indices (CIs) obtained from an RGB camera; and vegetation indices (VIs) obtained from a multispectral camera. The results showed that the estimation accuracy of the model developed by DL with RGB images (R2 = 0.963 and RMSE = 0.334) was higher than those of the PCA (R2 = 0.934 and RMSE = 0.555) and the regression models based on CIs (R2 = 0.802-0.947 and RMSE = 0.401–1.13), and comparable to that of the regression models based on VIs (R2 = 0.917–0.976 and RMSE = 0.332–0.644). Therefore, our results demonstrated that the estimation model using DL with an RGB camera on a UAV could be an alternative to the methods using PCA and a multispectral camera for rice LAI estimation.


2019 ◽  
Vol 11 (23) ◽  
pp. 6829 ◽  
Author(s):  
Umut Hasan ◽  
Mamat Sawut ◽  
Shuisen Chen

The leaf area index (LAI) is not only an important parameter for monitoring crop growth, but also an important input parameter for crop yield prediction models and hydrological and climatic models. Several studies have recently been conducted to estimate crop LAI using unmanned aerial vehicle (UAV) multispectral and hyperspectral data. However, there are few studies on estimating the LAI of winter wheat using unmanned aerial vehicle (UAV) RGB images. In this study, we estimated the LAI of winter wheat at the jointing stage on simple farmland in Xinjiang, China, using parameters derived from UAV RGB images. According to gray correlation analysis, UAV RGB-image parameters such as the Visible Atmospherically Resistant Index (VARI), the Red Green Blue Vegetation Index (RGBVI), the Digital Number (DN) of Blue Channel (B) and the Green Leaf Algorithm (GLA) were selected to develop models for estimating the LAI of winter wheat. The results showed that it is feasible to use UAV RGB images for inverting and mapping the LAI of winter wheat at the jointing stage on the field scale, and the partial least squares regression (PLSR) model based on the VARI, RGBVI, B and GLA had the best prediction accuracy (R2 = 0.776, root mean square error (RMSE) = 0.468, residual prediction deviation (RPD) = 1.838) among all the regression models. To conclude, UAV RGB images not only have great potential in estimating the LAI of winter wheat, but also can provide more reliable and accurate data for precision agriculture management.


2021 ◽  
Vol 13 (14) ◽  
pp. 2827
Author(s):  
Pengcheng Hu ◽  
Scott C. Chapman ◽  
Huidong Jin ◽  
Yan Guo ◽  
Bangyou Zheng

Aboveground dry weight (AGDW) and leaf area index (LAI) are indicators of crop growth status and grain yield as affected by interactions of genotype, environment, and management. Unmanned aerial vehicle (UAV) based remote sensing provides cost-effective and non-destructive methods for the high-throughput phenotyping of crop traits (e.g., AGDW and LAI) through the integration of UAV-derived vegetation indexes (VIs) with statistical models. However, the effects of different modelling strategies that use different dataset compositions of explanatory variables (i.e., combinations of sources and temporal combinations of the VI datasets) on estimates of AGDW and LAI have rarely been evaluated. In this study, we evaluated the effects of three sources of VIs (visible, spectral, and combined) and three types of temporal combinations of the VI datasets (mono-, multi-, and full-temporal) on estimates of AGDW and LAI. The VIs were derived from visible (RGB) and multi-spectral imageries, which were acquired by a UAV-based platform over a wheat trial at five sampling dates before flowering. Partial least squares regression models were built with different modelling strategies to estimate AGDW and LAI at each prediction date. The results showed that models built with the three sources of mono-temporal VIs obtained similar performances for estimating AGDW (RRMSE = 11.86% to 15.80% for visible, 10.25% to 16.70% for spectral, and 10.25% to 16.70% for combined VIs) and LAI (RRMSE = 13.30% to 22.56% for visible, 12.04% to 22.85% for spectral, and 13.45% to 22.85% for combined VIs) across prediction dates. Mono-temporal models built with visible VIs outperformed the other two sources of VIs in general. Models built with mono-temporal VIs generally obtained better estimates than models with multi- and full-temporal VIs. The results suggested that the use of UAV-derived visible VIs can be an alternative to multi-spectral VIs for high-throughput and in-season estimates of AGDW and LAI. The combination of modelling strategies that used mono-temporal datasets and a self-calibration method demonstrated the potential for in-season estimates of AGDW and LAI (RRMSE normally less than 15%) in breeding or agronomy trials.


Sign in / Sign up

Export Citation Format

Share Document