scholarly journals Assessing Past Climate Biases and the Added Value of CORDEX-CORE Precipitation Simulations over Africa

2021 ◽  
Vol 13 (11) ◽  
pp. 2058
Author(s):  
Gnim Tchalim Gnitou ◽  
Guirong Tan ◽  
Ruoyun Niu ◽  
Isaac Kwesi Nooni

The present study investigates the skills of CORDEX-CORE precipitation outputs in simulating Africa’s key seasonal climate features, emphasizing the added value (AV) of the dynamical downscaling approach from which they were derived. The results indicate the models’ good skills in capturing African rainfall patterns and dynamics at satellite-based observation resolutions, with up to 65.17% significant positive AV spatial coverage for the CCLM5 model and up to 55.47% significant positive AV spatial coverage for the REMO model. Unavoidable biases are however present in rainfall-abundant areas and are reflected in the AV results, but vary based on the season, the sub-area, and the Global Climate Model–Regional Climate Models (GCM-RCM) combination considered. The RCMs’ ensemble mean generally performs better than individual GCM–RCM simulations. A further analysis of the GCM–RCM model chain indicates a strong influence of the dynamical downscaling approach on the driving GCMs. However, exceptions are found in some seasons for specific RCMs’ outputs, where GCMs are influential. The findings also revealed that observational uncertainties can influence AV and contribute to a 6 to 34% difference in significant positive AV spatial coverage results. An analysis of these results suggests that the AV by CORDEX-CORE simulations over Africa depend on how well the GCM physics are integrated to those of the RCMs and how these features are accommodated in the high-resolution setting of the downscaling experiments. The deficiencies of the CORDEX-CORE simulations could be related to how well key processes are represented within the RCM models. For Africa, these results show that CORDEX-CORE products could be adequate for a wide range of high-resolution precipitation data applications.

Author(s):  
Filippo Giorgi ◽  
Erika Coppola ◽  
Daniela Jacob ◽  
Claas Teichmann ◽  
Sabina Abba Omar ◽  
...  

AbstractWe describe the first effort within the Coordinated Regional Climate Downscaling Experiment - Coordinated Output for Regional Evaluation, or CORDEX-CORE EXP-I. It consists of a set of 21st century projections with two regional climate models (RCMs) downscaling three global climate model (GCM) simulations from the CMIP5 program, for two greenhouse gas concentration pathways (RCP8.5 and RCP2.6), over 9 CORDEX domains at ~25 km grid spacing. Illustrative examples from the initial analysis of this ensemble are presented, covering a wide range of topics, such as added value of RCM nesting, extreme indices, tropical and extratropical storms, monsoons, ENSO, severe storm environments, emergence of change signals, energy production. They show that the CORDEX-CORE EXP-I ensemble can provide downscaled information of unprecedented comprehensiveness to increase understanding of processes relevant for regional climate change and impacts, and to assess the added value of RCMs. The CORDEX-CORE EXP-I dataset, which will be incrementally augmented with new simulations, is intended to be a public resource available to the scientific and end-user communities for application to process studies, impacts on different socioeconomic sectors and climate service activities. The future of the CORDEX-CORE initiative is also discussed.


Proceedings ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 23 ◽  
Author(s):  
Carlos Garijo ◽  
Luis Mediero

Climate model projections can be used to assess the expected behaviour of extreme precipitations in the future due to climate change. The European part of the Coordinated Regional Climate Downscalling Experiment (EURO-CORDEX) provides precipitation projections for the future under various representative concentration pathways (RCPs) through regionalised Global Climate Model (GCM) outputs by a set of Regional Climate Models (RCMs). In this work, 12 combinations of GCM and RCM under two scenarios (RCP 4.5 and RCP 8.5) supplied by the EURO-CORDEX are analysed for the Iberian Peninsula. Precipitation quantiles for a set of probabilities of non-exceedance are estimated by using the Generalized Extreme Value (GEV) distribution and L-moments. Precipitation quantiles expected in the future are compared with the precipitation quantiles in the control period for each climate model. An approach based on Monte Carlo simulations is developed in order to assess the uncertainty from the climate model projections. Expected changes in the future are compared with the sampling uncertainty in the control period. Thus, statistically significant changes are identified. The higher the significance threshold, the fewer cells with significant changes are identified. Consequently, a set of maps are obtained in order to assist the decision-making process in subsequent climate change studies.


2020 ◽  
Author(s):  
Raphael Hébert ◽  
Ulrike herzschuh ◽  
Thomas Laepple

<p>Multidecadal to millenial timescale climate variability has been investigated over the ocean</p><p>using extensive proxy data and it was found to yield coherent interproxy estimates of global and regional sea-surface temperature (SST) climate variability (Laepple and Huybers, 2014). Global Climate Model (GCM) simulations on the other hand, were found to exhibit an increasingly large deficit of regional SST climate variability for increasingly longer timescales.</p><p>Further investigation is needed to better quantify terrestrial climate variability for long</p><p>timescales and validate climate models.</p><p>Vegetation related proxies such as tree rings and pollen records are the most widespread</p><p>types of archives available to investigate terrestrial climate variability. Tree ring records are</p><p>particularly useful for short time scales estimates due to their annual resolution, while pollen-based reconstructions are necessary to cover the longer timescales. In the present work, we use a large database of 1873 pollen records covering the northern hemisphere in order to quantify Holocene vegetation and climate variability for the first time at centennial to multi-millenial timescales.</p><p>To ensure the robustness of our results, we are particularly interested in the spatio-temporal representativity of the archived signal in pollen records after taking into account the effective spatial scale, the intermittent and irregular sampling, the age-uncertainty and the sediment mixing effect. A careful treatment of the proxy formation allows us to investigate the spatial correlation structure of the pollen-based climate reconstructions as a function of timescales. The pollen data results are then contrasted with the analysis replicated using transient Holocene simulations produced with state-of-the-art climate models as well as stochastic climate model simulations.Our results indicate a substantial gap in terrestrial climate variability between the climate model simulations and the pollen reconstructions at centennial to multi-millenial timescales, mirroring the variability gap found in the marine domain. Finally, we investigate how future climate model projections with greater internal variability would be affected, and how this increases the uncertainty of regional land temperature projections.</p>


2017 ◽  
Vol 98 (1) ◽  
pp. 79-93 ◽  
Author(s):  
Elizabeth J. Kendon ◽  
Nikolina Ban ◽  
Nigel M. Roberts ◽  
Hayley J. Fowler ◽  
Malcolm J. Roberts ◽  
...  

Abstract Regional climate projections are used in a wide range of impact studies, from assessing future flood risk to climate change impacts on food and energy production. These model projections are typically at 12–50-km resolution, providing valuable regional detail but with inherent limitations, in part because of the need to parameterize convection. The first climate change experiments at convection-permitting resolution (kilometer-scale grid spacing) are now available for the United Kingdom; the Alps; Germany; Sydney, Australia; and the western United States. These models give a more realistic representation of convection and are better able to simulate hourly precipitation characteristics that are poorly represented in coarser-resolution climate models. Here we examine these new experiments to determine whether future midlatitude precipitation projections are robust from coarse to higher resolutions, with implications also for the tropics. We find that the explicit representation of the convective storms themselves, only possible in convection-permitting models, is necessary for capturing changes in the intensity and duration of summertime rain on daily and shorter time scales. Other aspects of rainfall change, including changes in seasonal mean precipitation and event occurrence, appear robust across resolutions, and therefore coarse-resolution regional climate models are likely to provide reliable future projections, provided that large-scale changes from the global climate model are reliable. The improved representation of convective storms also has implications for projections of wind, hail, fog, and lightning. We identify a number of impact areas, especially flooding, but also transport and wind energy, for which very high-resolution models may be needed for reliable future assessments.


2021 ◽  
Author(s):  
Zhongfeng Xu ◽  
Ying Han ◽  
Chi-Yung Tam ◽  
Zong-Liang Yang ◽  
Congbin Fu

Abstract Dynamical downscaling is the most widely used physics-based approach to obtaining fine-scale weather and climate information. However, traditional dynamical downscaling approaches are often degraded by biases in the large-scale forcing. To improve the confidence in future projection of regional climate, we used a novel bias-corrected global climate model (GCM) dataset to drive a regional climate model (RCM) over the period for 1980–2014. The dynamical downscaling simulations driven by the original GCM dataset (MPI-ESM1-2-HR model) (hereafter WRF_GCM), the bias-corrected GCM (hereafter WRF_GCMbc) are validated against that driven by the European Centre for Medium-Range Weather Forecasts Reanalysis 5 dataset (hereafter WRF_ERA5), respectively. The results suggest that, compared with the WRF_GCM, the WRF_GCMbc shows a 50–90% reduction in RMSEs of the climatological mean of downscaled variables (e.g. temperature, precipitation, wind, relative humidity). Similarly, the WRF_GCMbc also shows improved performance in simulating the interannual variability of downscaled variables. The RMSEs of interannual variances of downscaled variables are reduced by 30–60%. An EOF analysis suggests that the WRF_GCMbc can successfully reproduce the dominant tri-pole mode in the interannual summer precipitation variations observed over eastern China as opposed to the mono-pole precipitation pattern simulated by the WRF_GCM. Such improvements are primarily caused by the correct simulation of the location of the western North Pacific subtropical high by the WRF_GCMbc due to the GCM bias correction.


2014 ◽  
Vol 27 (21) ◽  
pp. 7994-8016 ◽  
Author(s):  
G. A. Vecchi ◽  
T. Delworth ◽  
R. Gudgel ◽  
S. Kapnick ◽  
A. Rosati ◽  
...  

Abstract Tropical cyclones (TCs) are a hazard to life and property and a prominent element of the global climate system; therefore, understanding and predicting TC location, intensity, and frequency is of both societal and scientific significance. Methodologies exist to predict basinwide, seasonally aggregated TC activity months, seasons, and even years in advance. It is shown that a newly developed high-resolution global climate model can produce skillful forecasts of seasonal TC activity on spatial scales finer than basinwide, from months and seasons in advance of the TC season. The climate model used here is targeted at predicting regional climate and the statistics of weather extremes on seasonal to decadal time scales, and comprises high-resolution (50 km × 50 km) atmosphere and land components as well as more moderate-resolution (~100 km) sea ice and ocean components. The simulation of TC climatology and interannual variations in this climate model is substantially improved by correcting systematic ocean biases through “flux adjustment.” A suite of 12-month duration retrospective forecasts is performed over the 1981–2012 period, after initializing the climate model to observationally constrained conditions at the start of each forecast period, using both the standard and flux-adjusted versions of the model. The standard and flux-adjusted forecasts exhibit equivalent skill at predicting Northern Hemisphere TC season sea surface temperature, but the flux-adjusted model exhibits substantially improved basinwide and regional TC activity forecasts, highlighting the role of systematic biases in limiting the quality of TC forecasts. These results suggest that dynamical forecasts of seasonally aggregated regional TC activity months in advance are feasible.


2020 ◽  
Vol 59 (2) ◽  
pp. 207-235 ◽  
Author(s):  
Lei Zhang ◽  
YinLong Xu ◽  
ChunChun Meng ◽  
XinHua Li ◽  
Huan Liu ◽  
...  

AbstractIn aiming for better access to climate change information and for providing climate service, it is important to obtain reliable high-resolution temperature simulations. Systematic comparisons are still deficient between statistical and dynamic downscaling techniques because of their inherent unavoidable uncertainties. In this paper, 20 global climate models (GCMs) and one regional climate model [Providing Regional Climates to Impact Studies (PRECIS)] are employed to evaluate their capabilities in reproducing average trends of mean temperature (Tm), maximum temperature (Tmax), minimum temperature (Tmin), diurnal temperature range (DTR), and extreme events represented by frost days (FD) and heat-wave days (HD) across China. It is shown generally that bias of temperatures from GCMs relative to observations is over ±1°C across more than one-half of mainland China. PRECIS demonstrates better representation of temperatures (except for HD) relative to GCMs. There is relatively better performance in Huanghuai, Jianghuai, Jianghan, south Yangzi River, and South China, whereas estimation is not as good in Xinjiang, the eastern part of northwest China, and the Tibetan Plateau. Bias-correction spatial disaggregation is used to downscale GCMs outputs, and bias correction is applied for PRECIS outputs, which demonstrate better improvement to a bias within ±0.2°C for Tm, Tmax, Tmin, and DTR and ±2 days for FD and HD. Furthermore, such improvement is also verified by the evidence of increased spatial correlation coefficient and symmetrical uncertainty, decreased root-mean-square error, and lower standard deviation for reproductions. It is seen from comprehensive ranking metrics that different downscaled models show the most improvement across different climatic regions, implying that optional ensembles of models should be adopted to provide sufficient high-quality climate information.


2017 ◽  
Vol 56 (12) ◽  
pp. 3245-3262 ◽  
Author(s):  
A. Wootten ◽  
A. Terando ◽  
B. J. Reich ◽  
R. P. Boyles ◽  
F. Semazzi

AbstractIn recent years, climate model experiments have been increasingly oriented toward providing information that can support local and regional adaptation to the expected impacts of anthropogenic climate change. This shift has magnified the importance of downscaling as a means to translate coarse-scale global climate model (GCM) output to a finer scale that more closely matches the scale of interest. Applying this technique, however, introduces a new source of uncertainty into any resulting climate model ensemble. Here a method is presented, on the basis of a previously established variance decomposition method, to partition and quantify the uncertainty in climate model ensembles that is attributable to downscaling. The method is applied to the southeastern United States using five downscaled datasets that represent both statistical and dynamical downscaling techniques. The combined ensemble is highly fragmented, in that only a small portion of the complete set of downscaled GCMs and emission scenarios is typically available. The results indicate that the uncertainty attributable to downscaling approaches ~20% for large areas of the Southeast for precipitation and ~30% for extreme heat days (>35°C) in the Appalachian Mountains. However, attributable quantities are significantly lower for time periods when the full ensemble is considered but only a subsample of all models is available, suggesting that overconfidence could be a serious problem in studies that employ a single set of downscaled GCMs. This article concludes with recommendations to advance the design of climate model experiments so that the uncertainty that accrues when downscaling is employed is more fully and systematically considered.


Author(s):  
P. A. O’Gorman ◽  
Z. Li ◽  
W. R. Boos ◽  
J. Yuval

Projections of precipitation extremes in simulations with global climate models are very uncertain in the tropics, in part because of the use of parameterizations of deep convection and model deficiencies in simulating convective organization. Here, we analyse precipitation extremes in high-resolution simulations that are run without a convective parameterization on a quasi-global aquaplanet. The frequency distributions of precipitation rates and precipitation cluster sizes in the tropics of a control simulation are similar to the observed distributions. In response to climate warming, 3 h precipitation extremes increase at rates of up to 9 %   K − 1 in the tropics because of a combination of positive thermodynamic and dynamic contributions. The dynamic contribution at different latitudes is connected to the vertical structure of warming using a moist static stability. When the precipitation rates are first averaged to a daily timescale and coarse-grained to a typical global climate-model resolution prior to calculating the precipitation extremes, the response of the precipitation extremes to warming becomes more similar to what was found previously in coarse-resolution aquaplanet studies. However, the simulations studied here do not exhibit the high rates of increase of tropical precipitation extremes found in projections with some global climate models. This article is part of a discussion meeting issue ‘Intensification of short-duration rainfall extremes and implications for flash flood risks’.


Author(s):  
Liying Qiu ◽  
Eun-Soon Im

Abstract This study evaluates the resolution dependency of scaling precipitation with temperature from the perspective of the added value of high-resolution (5-km) dynamical downscaling using various kinds of long-term climate change projections over South Korea. Three CMIP5 Global Climate Models (GCMs) with different climate sensitivities, and one pseudo global warming (PGW) experiment, are downscaled by Weather Research and Forecasting (WRF) one-way double nested modeling system with convective parameterization for the reference (1976-2005) and future (2071-2100) periods under RCP8.5 scenario. A detailed comparison of the driving GCM/PGW, 20-km mother simulation, and 5-km nested simulation demonstrates improved representation of precipitation with increasing resolution not only in the spatial pattern and magnitude for both the mean and the extremes, but also in a more realistic representation of extreme precipitation’s sensitivities to temperature. According to the projected precipitation changes downscaled from both GCM ensemble and PGW, there will be intensified precipitation, particularly for the extremes, over South Korea under the warming, which is primarily contributed by CP increase that shows higher temperature sensitivity. This study also compares the extreme precipitation-temperature scaling relations within-epoch (apparent scaling) and between-epoch (climate scaling). It confirms that the magnitude and spatial pattern of the two scaling rates can be quite different, and the precipitation change over Korea under global warming is mainly controlled by thermodynamic factors.


Sign in / Sign up

Export Citation Format

Share Document