scholarly journals Added value of high-resolution climate projections over South Korea on the scaling of precipitation with temperature

Author(s):  
Liying Qiu ◽  
Eun-Soon Im

Abstract This study evaluates the resolution dependency of scaling precipitation with temperature from the perspective of the added value of high-resolution (5-km) dynamical downscaling using various kinds of long-term climate change projections over South Korea. Three CMIP5 Global Climate Models (GCMs) with different climate sensitivities, and one pseudo global warming (PGW) experiment, are downscaled by Weather Research and Forecasting (WRF) one-way double nested modeling system with convective parameterization for the reference (1976-2005) and future (2071-2100) periods under RCP8.5 scenario. A detailed comparison of the driving GCM/PGW, 20-km mother simulation, and 5-km nested simulation demonstrates improved representation of precipitation with increasing resolution not only in the spatial pattern and magnitude for both the mean and the extremes, but also in a more realistic representation of extreme precipitation’s sensitivities to temperature. According to the projected precipitation changes downscaled from both GCM ensemble and PGW, there will be intensified precipitation, particularly for the extremes, over South Korea under the warming, which is primarily contributed by CP increase that shows higher temperature sensitivity. This study also compares the extreme precipitation-temperature scaling relations within-epoch (apparent scaling) and between-epoch (climate scaling). It confirms that the magnitude and spatial pattern of the two scaling rates can be quite different, and the precipitation change over Korea under global warming is mainly controlled by thermodynamic factors.

2019 ◽  
Author(s):  
Øivind Hodnebrog ◽  
Gunnar Myhre ◽  
Bjørn H. Samset ◽  
Kari Alterskjær ◽  
Timothy Andrews ◽  
...  

Abstract. The relationship between changes in integrated water vapour (IWV) and precipitation can be characterized by quantifying changes in atmospheric water vapour lifetime. Precipitation isotope ratios correlate with this lifetime, a relationship that helps understand dynamical processes and may lead to improved climate projections. We investigate how water vapour and its lifetime respond to different drivers of climate change, such as greenhouse gases and aerosols. Results from 11 global climate models have been used, based on simulations where CO2, methane, solar irradiance, black carbon (BC), and sulphate have been perturbed separately. A lifetime increase from 8 to 10 days is projected between 1986–2005 and 2081–2100, under a business-as-usual pathway. By disentangling contributions from individual climate drivers, we present a physical understanding of how global warming slows down the hydrological cycle, due to longer lifetime, but still amplifies the cycle due to stronger precipitation/evaporation fluxes. The feedback response of IWV to surface temperature change differs somewhat between drivers. Fast responses amplify these differences and lead to net changes in IWV per degree surface warming ranging from 6.4±0.9 %/K for sulphate to 9.8±2 %/K for BC. While BC is the driver with the strongest increase in IWV per degree surface warming, it is also the only driver with a reduction in precipitation per degree surface warming. Consequently, increases in BC aerosol concentrations yield the strongest slowdown of the hydrological cycle among the climate drivers studied, with a change in water vapour lifetime per degree surface warming of 1.1±0.4 days/K, compared to less than 0.5 days/K for the other climate drivers (CO2, methane, solar irradiance, sulphate).


2020 ◽  
Author(s):  
Lianyi Guo

<p>Four bias-correction methods, i.e. Gamma Cumulative Distribution Function (GamCDF), Quantile-Quantile Adjustment (QQadj), Equidistant CDF Matching (EDCDF) and Transform CDF (CDF-t), were applied to five daily precipitation datasets over China produced by LMDZ4-regional that was nested into five global climate models (GCMs), BCC-CSM1-1m, CNRM-CM5, FGOALS-g2, IPSL-CM5A-MR and MPI-ESM-MR, respectively. A unified mathematical framework can be used to define the four methods, which helps understanding their nature and essence in identifying the most reliable probability distributions of projected climate. CDF-t is shown to be the best bias-correction algorithm based on a comprehensive evaluation of different rainfall indices. Future precipitation projections corresponds to the global warming levels of 1.5°C and 2°C under RCP8.5 were obtained using the bias correction methods. The multi-algorithm and multi-model ensemble characteristics allow to explore the spreading of results, considered as a surrogate of climate projection uncertainty, and to attribute such uncertainties to different sources. It was found that the spread among bias-correction methods is smaller than that among dynamical downscaling simulations. The four bias-correction methods with CDF-t at the top all reduce the spread among the downscaled results. Future projection using CDF-t is thus considered having higher credibility.</p>


2021 ◽  
Author(s):  
Matias Ezequiel Olmo ◽  
Rocio Balmaceda-Huarte ◽  
Maria Laura Bettolli

Abstract High-resolution climate information is required over southeastern South America (SESA) for a better understanding of the observed and projected climate changes due to their strong socio-economic and hydrological impacts. Thereby, this work focuses on the construction of an unprecedented multi-model ensemble of statistically downscaled global climate models (GCMs) for daily precipitation, considering different statistical techniques - including analogs, generalized linear models and neural networks - and a variety of CMIP5 and CMIP6 models. The skills and shortcomings of the different downscaled models were identified. Most of the methods added value in the representation of the main features of daily precipitation, especially in the spatial and intra-annual variability of extremes. The statistical methods showed to be sensitive to the driver GCMs, although the ESD family choice also introduced differences in the simulations. The statistically downscaled projections depicted increases in mean precipitation associated with a rising frequency of extreme events - mostly during the warm season - following the registered trends over SESA. Change rates were consistent among downscaled models up to the middle 21st century when model spread started to emerge. Furthermore, these projections were compared to the available CORDEX-CORE RCM simulations, evidencing a consistent agreement between statistical and dynamical downscaling procedures in terms of the sign of the changes, presenting some differences in their intensity. Overall, this study evidences the potential of statistical downscaling in a changing climate and contributes to its undergoing development over SESA.


2020 ◽  
Vol 12 (9) ◽  
pp. 3684
Author(s):  
Mohamed Salem Nashwan ◽  
Shamsuddin Shahid ◽  
Eun-Sung Chung

The present study projected future climate change for the densely populated Central North region of Egypt (CNE) for two representative concentration pathways (RCPs) and two futures (near future: 2020–2059, and far future: 2060–2099), estimated by a credible subset of five global climate models (GCMs). Different bias correction models have been applied to correct the bias in the five interpolated GCMs’ outputs onto a high-resolution horizontal grid. The 0.05° CNE datasets of maximum and minimum temperatures (Tmx, and Tmn, respectively) and the 0.1° African Rainfall Climatology (ARC2) datasets represented the historical climate. The evaluation of bias correction methodologies revealed the better performance of linear and variance scaling for correcting the rainfall and temperature GCMs’ outputs, respectively. They were used to transfer the correction factor to the projections. The five statistically bias-corrected climate projections presented the uncertainty range in the future change in the climate of CNE. The rainfall is expected to increase in the near future but drastically decrease in the far future. The Tmx and Tmn are projected to increase in both future periods reaching nearly a maximum of 5.50 and 8.50 °C for Tmx and Tmn, respectively. These findings highlighted the severe consequence of climate change on the socio-economic activities in the CNE aiming for better sustainable development.


2021 ◽  
Vol 13 (11) ◽  
pp. 2058
Author(s):  
Gnim Tchalim Gnitou ◽  
Guirong Tan ◽  
Ruoyun Niu ◽  
Isaac Kwesi Nooni

The present study investigates the skills of CORDEX-CORE precipitation outputs in simulating Africa’s key seasonal climate features, emphasizing the added value (AV) of the dynamical downscaling approach from which they were derived. The results indicate the models’ good skills in capturing African rainfall patterns and dynamics at satellite-based observation resolutions, with up to 65.17% significant positive AV spatial coverage for the CCLM5 model and up to 55.47% significant positive AV spatial coverage for the REMO model. Unavoidable biases are however present in rainfall-abundant areas and are reflected in the AV results, but vary based on the season, the sub-area, and the Global Climate Model–Regional Climate Models (GCM-RCM) combination considered. The RCMs’ ensemble mean generally performs better than individual GCM–RCM simulations. A further analysis of the GCM–RCM model chain indicates a strong influence of the dynamical downscaling approach on the driving GCMs. However, exceptions are found in some seasons for specific RCMs’ outputs, where GCMs are influential. The findings also revealed that observational uncertainties can influence AV and contribute to a 6 to 34% difference in significant positive AV spatial coverage results. An analysis of these results suggests that the AV by CORDEX-CORE simulations over Africa depend on how well the GCM physics are integrated to those of the RCMs and how these features are accommodated in the high-resolution setting of the downscaling experiments. The deficiencies of the CORDEX-CORE simulations could be related to how well key processes are represented within the RCM models. For Africa, these results show that CORDEX-CORE products could be adequate for a wide range of high-resolution precipitation data applications.


2011 ◽  
Author(s):  
Enrico Scoccimarro ◽  
Silvio Gualdi ◽  
Antonella Sanna ◽  
Edoardo Bucchignani ◽  
Myriam Montesarchio

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lennart Quante ◽  
Sven N. Willner ◽  
Robin Middelanis ◽  
Anders Levermann

AbstractDue to climate change the frequency and character of precipitation are changing as the hydrological cycle intensifies. With regards to snowfall, global warming has two opposing influences; increasing humidity enables intense snowfall, whereas higher temperatures decrease the likelihood of snowfall. Here we show an intensification of extreme snowfall across large areas of the Northern Hemisphere under future warming. This is robust across an ensemble of global climate models when they are bias-corrected with observational data. While mean daily snowfall decreases, both the 99th and the 99.9th percentiles of daily snowfall increase in many regions in the next decades, especially for Northern America and Asia. Additionally, the average intensity of snowfall events exceeding these percentiles as experienced historically increases in many regions. This is likely to pose a challenge to municipalities in mid to high latitudes. Overall, extreme snowfall events are likely to become an increasingly important impact of climate change in the next decades, even if they will become rarer, but not necessarily less intense, in the second half of the century.


Climate ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 15 ◽  
Author(s):  
Ge Peng ◽  
Jessica L. Matthews ◽  
Muyin Wang ◽  
Russell Vose ◽  
Liqiang Sun

The prospect of an ice-free Arctic in our near future due to the rapid and accelerated Arctic sea ice decline has brought about the urgent need for reliable projections of the first ice-free Arctic summer year (FIASY). Together with up-to-date observations and characterizations of Arctic ice state, they are essential to business strategic planning, climate adaptation, and risk mitigation. In this study, the monthly Arctic sea ice extents from 12 global climate models are utilized to obtain projected FIASYs and their dependency on different emission scenarios, as well as to examine the nature of the ice retreat projections. The average value of model-projected FIASYs is 2054/2042, with a spread of 74/42 years for the medium/high emission scenarios, respectively. The earliest FIASY is projected to occur in year 2023, which may not be realistic, for both scenarios. The sensitivity of individual climate models to scenarios in projecting FIASYs is very model-dependent. The nature of model-projected Arctic sea ice coverage changes is shown to be primarily linear. FIASY values predicted by six commonly used statistical models that were curve-fitted with the first 30 years of climate projections (2006–2035), on other hand, show a preferred range of 2030–2040, with a distinct peak at 2034 for both scenarios, which is more comparable with those from previous studies.


2020 ◽  
Author(s):  
Anja Katzenberger ◽  
Jacob Schewe ◽  
Julia Pongratz ◽  
Anders Levermann

Abstract. The Indian summer monsoon is an integral part of the global climate system. As its seasonal rainfall plays a crucial role in India's agriculture and shapes many other aspects of life, it affects the livelihood of a fifth of the world's population. It is therefore highly relevant to assess its change under potential future climate change. Global climate models within the Coupled Model Intercomparison Project Phase 5 (CMIP-5) indicated a consistent increase in monsoon rainfall and its variability under global warming. Since the range of the results of CMIP-5 was still large and the confidence in the models was limited due to partly poor representation of observed rainfall, the updates within the latest generation of climate models in CMIP-6 are of interest. Here, we analyse 32 models of the latest CMIP-6 exercise with regard to their annual mean monsoon rainfall and its variability. All of these models show a substantial increase in June-to-September (JJAS) mean rainfall under unabated climate change (SSP5-8.5) and most do also for the other three Shared Socioeconomic Pathways analyzed (SSP1-2.6, SSP2-4.5, SSP3-7.0). Moreover, the simulation ensemble indicates a linear dependence of rainfall on global mean temperature with high agreement between the models and independent of the SSP; the multi-model mean for JJAS projects an increase of 0.33 mm/day and 5.3 % per degree of global warming. This is significantly higher than in the CMIP-5 projections. Most models project that the increase will contribute to the precipitation especially in the Himalaya region and to the northeast of the Bay of Bengal, as well as the west coast of India. Interannual variability is found to be increasing in the higher-warming scenarios by almost all models. The CMIP-6 simulations largely confirm the findings from CMIP-5 models, but show an increased robustness across models with reduced uncertainties and updated magnitudes towards a stronger increase in monsoon rainfall.


2012 ◽  
Vol 9 (8) ◽  
pp. 9847-9884
Author(s):  
N. Guyennon ◽  
E. Romano ◽  
I. Portoghese ◽  
F. Salerno ◽  
S. Calmanti ◽  
...  

Abstract. Various downscaling techniques have been developed to bridge the scale gap between global climate models (GCMs) and finer scales required to assess hydrological impacts of climate change. Such techniques may be grouped into two downscaling approaches: the deterministic dynamical downscaling (DD) and the stochastic statistical downscaling (SD). Although SD has been traditionally seen as an alternative to DD, recent works on statistical downscaling have aimed to combine the benefits of these two approaches. The overall objective of this study is to examine the relative benefits of each downscaling approach and their combination in making the GCM scenarios suitable for basin scale hydrological applications. The case study presented here focuses on the Apulia region (South East of Italy, surface area about 20 000 km2), characterized by a typical Mediterranean climate; the monthly cumulated precipitation and monthly mean of daily minimum and maximum temperature distribution were examined for the period 1953–2000. The fifth-generation ECHAM model from the Max-Planck-Institute for Meteorology was adopted as GCM. The DD was carried out with the Protheus system (ENEA), while the SD was performed through a monthly quantile-quantile transform. The SD resulted efficient in reducing the mean bias in the spatial distribution at both annual and seasonal scales, but it was not able to correct the miss-modeled non-stationary components of the GCM dynamics. The DD provided a partial correction by enhancing the trend spatial heterogeneity and time evolution predicted by the GCM, although the comparison with observations resulted still underperforming. The best results were obtained through the combination of both DD and SD approaches.


Sign in / Sign up

Export Citation Format

Share Document