scholarly journals Spatial Super Resolution of Real-World Aerial Images for Image-Based Plant Phenotyping

2021 ◽  
Vol 13 (12) ◽  
pp. 2308
Author(s):  
Masoomeh Aslahishahri ◽  
Kevin G. Stanley ◽  
Hema Duddu ◽  
Steve Shirtliffe ◽  
Sally Vail ◽  
...  

Unmanned aerial vehicle (UAV) imaging is a promising data acquisition technique for image-based plant phenotyping. However, UAV images have a lower spatial resolution than similarly equipped in field ground-based vehicle systems, such as carts, because of their distance from the crop canopy, which can be particularly problematic for measuring small-sized plant features. In this study, the performance of three deep learning-based super resolution models, employed as a pre-processing tool to enhance the spatial resolution of low resolution images of three different kinds of crops were evaluated. To train a super resolution model, aerial images employing two separate sensors co-mounted on a UAV flown over lentil, wheat and canola breeding trials were collected. A software workflow to pre-process and align real-world low resolution and high-resolution images and use them as inputs and targets for training super resolution models was created. To demonstrate the effectiveness of real-world images, three different experiments employing synthetic images, manually downsampled high resolution images, or real-world low resolution images as input to the models were conducted. The performance of the super resolution models demonstrates that the models trained with synthetic images cannot generalize to real-world images and fail to reproduce comparable images with the targets. However, the same models trained with real-world datasets can reconstruct higher-fidelity outputs, which are better suited for measuring plant phenotypes.

Author(s):  
Xiongxiong Xue ◽  
Zhenqi Han ◽  
Weiqin Tong ◽  
Mingqi Li ◽  
Lizhuang Liu

Video super-resolution, which utilizes the relevant information of several low-resolution frames to generate high-resolution images, is a challenging task. One possible solution called sliding window method tries to divide the generation of high-resolution video sequences into independent sub-tasks, and only adjacent low-resolution images are used to estimate the high-resolution version of the central low-resolution image. Another popular method named recurrent algorithm proposes to utilize not only the low-resolution images but also the generated high-resolution images of previous frames to generate the high-resolution image. However, both methods have some unavoidable disadvantages. The former one usually leads to bad temporal consistency and requires higher computational cost while the latter method always can not make full use of information contained by optical flow or any other calculated features. Thus more investigations need to be done to explore the balance between these two methods. In this work, a bidirectional frame recurrent video super-resolution method is proposed. To be specific, a reverse training is proposed that the generated high-resolution frame is also utilized to help estimate the high-resolution version of the former frame. With the contribution of reverse training and the forward training, the idea of bidirectional recurrent method not only guarantees the temporal consistency but also make full use of the adjacent information due to the bidirectional training operation while the computational cost is acceptable. Experimental results demonstrate that the bidirectional super-resolution framework gives remarkable performance that it solves the time-related problems when the generated high-resolution image is impressive compared with recurrent-based video super-resolution method.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1761
Author(s):  
Xinhua Wang ◽  
Qianguo Xing ◽  
Deyu An ◽  
Ling Meng ◽  
Xiangyang Zheng ◽  
...  

Satellite images with different spatial resolutions are widely used in the observations of floating macroalgae booms in sea surface. In this study, semi-synchronous satellite images with different resolutions (10 m, 16 m, 30 m, 50 m, 100 m, 250 m and 500 m) acquired over the Yellow Sea, are used to quantitatively assess the effects of spatial resolution on the observation of floating macroalgae blooms of Ulva prolifera. Results indicate that the covering area of macroalgae-mixing pixels (MM-CA) detected from high resolution images is smaller than that from low resolution images; however, the area affected by macroalgae blooms (AA) is larger in high resolution images than in low resolution ones. The omission rates in the MM-CA and the AA increase with the decrease of spatial resolution. These results indicate that satellite remote sensing on the basis of low resolution images (especially, 100 m, 250 m, 500 m), would overestimate the covering area of macroalgae while omit the small patches in the affected zones. To reduce the impacts of overestimation and omission, high resolution satellite images are used to show the seasonal changes of macroalgae blooms in 2018 and 2019 in the Yellow Sea.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
K. Velumani ◽  
R. Lopez-Lozano ◽  
S. Madec ◽  
W. Guo ◽  
J. Gillet ◽  
...  

Early-stage plant density is an essential trait that determines the fate of a genotype under given environmental conditions and management practices. The use of RGB images taken from UAVs may replace the traditional visual counting in fields with improved throughput, accuracy, and access to plant localization. However, high-resolution images are required to detect the small plants present at the early stages. This study explores the impact of image ground sampling distance (GSD) on the performances of maize plant detection at three-to-five leaves stage using Faster-RCNN object detection algorithm. Data collected at high resolution (GSD≈0.3 cm) over six contrasted sites were used for model training. Two additional sites with images acquired both at high and low (GSD≈0.6 cm) resolutions were used to evaluate the model performances. Results show that Faster-RCNN achieved very good plant detection and counting (rRMSE=0.08) performances when native high-resolution images are used both for training and validation. Similarly, good performances were observed (rRMSE=0.11) when the model is trained over synthetic low-resolution images obtained by downsampling the native training high-resolution images and applied to the synthetic low-resolution validation images. Conversely, poor performances are obtained when the model is trained on a given spatial resolution and applied to another spatial resolution. Training on a mix of high- and low-resolution images allows to get very good performances on the native high-resolution (rRMSE=0.06) and synthetic low-resolution (rRMSE=0.10) images. However, very low performances are still observed over the native low-resolution images (rRMSE=0.48), mainly due to the poor quality of the native low-resolution images. Finally, an advanced super resolution method based on GAN (generative adversarial network) that introduces additional textural information derived from the native high-resolution images was applied to the native low-resolution validation images. Results show some significant improvement (rRMSE=0.22) compared to bicubic upsampling approach, while still far below the performances achieved over the native high-resolution images.


Author(s):  
R. S. Hansen ◽  
D. W. Waldram ◽  
T. Q. Thai ◽  
R. B. Berke

Abstract Background High-resolution Digital Image Correlation (DIC) measurements have previously been produced by stitching of neighboring images, which often requires short working distances. Separately, the image processing community has developed super resolution (SR) imaging techniques, which improve resolution by combining multiple overlapping images. Objective This work investigates the novel pairing of super resolution with digital image correlation, as an alternative method to produce high-resolution full-field strain measurements. Methods First, an image reconstruction test is performed, comparing the ability of three previously published SR algorithms to replicate a high-resolution image. Second, an applied translation is compared against DIC measurement using both low- and super-resolution images. Third, a ring sample is mechanically deformed and DIC strain measurements from low- and super-resolution images are compared. Results SR measurements show improvements compared to low-resolution images, although they do not perfectly replicate the high-resolution image. SR-DIC demonstrates reduced error and improved confidence in measuring rigid body translation when compared to low resolution alternatives, and it also shows improvement in spatial resolution for strain measurements of ring deformation. Conclusions Super resolution imaging can be effectively paired with Digital Image Correlation, offering improved spatial resolution, reduced error, and increased measurement confidence.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4601
Author(s):  
Juan Wen ◽  
Yangjing Shi ◽  
Xiaoshi Zhou ◽  
Yiming Xue

Currently, various agricultural image classification tasks are carried out on high-resolution images. However, in some cases, we cannot get enough high-resolution images for classification, which significantly affects classification performance. In this paper, we design a crop disease classification network based on Enhanced Super-Resolution Generative adversarial networks (ESRGAN) when only an insufficient number of low-resolution target images are available. First, ESRGAN is used to recover super-resolution crop images from low-resolution images. Transfer learning is applied in model training to compensate for the lack of training samples. Then, we test the performance of the generated super-resolution images in crop disease classification task. Extensive experiments show that using the fine-tuned ESRGAN model can recover realistic crop information and improve the accuracy of crop disease classification, compared with the other four image super-resolution methods.


Author(s):  
Dong Seon Cheng ◽  
Marco Cristani ◽  
Vittorio Murino

Image super-resolution is one of the most appealing applications of image processing, capable of retrieving a high resolution image by fusing several registered low resolution images depicting an object of interest. However, employing super-resolution in video data is challenging: a video sequence generally contains a lot of scattered information regarding several objects of interest in cluttered scenes. Especially with hand-held cameras, the overall quality may be poor due to low resolution or unsteadiness. The objective of this chapter is to demonstrate why standard image super-resolution fails in video data, which are the problems that arise, and how we can overcome these problems. In our first contribution, we propose a novel Bayesian framework for super-resolution of persistent objects of interest in video sequences. We call this process Distillation. In the traditional formulation of the image super-resolution problem, the observed target is (1) always the same, (2) acquired using a camera making small movements, and (3) found in a number of low resolution images sufficient to recover high-frequency information. These assumptions are usually unsatisfied in real world video acquisitions and often beyond the control of the video operator. With Distillation, we aim to extend and to generalize the image super-resolution task, embedding it in a structured framework that accurately distills all the informative bits of an object of interest. In practice, the Distillation process: i) individuates, in a semi supervised way, a set of objects of interest, clustering the related video frames and registering them with respect to global rigid transformations; ii) for each one, produces a high resolution image, by weighting each pixel according to the information retrieved about the object of interest. As a second contribution, we extend the Distillation process to deal with objects of interest whose transformations in the appearance are not (only) rigid. Such process, built on top of the Distillation, is hierarchical, in the sense that a process of clustering is applied recursively, beginning with the analysis of whole frames, and selectively focusing on smaller sub-regions whose isolated motion can be reasonably assumed as rigid. The ultimate product of the overall process is a strip of images that describe at high resolution the dynamics of the video, switching between alternative local descriptions in response to visual changes. Our approach is first tested on synthetic data, obtaining encouraging comparative results with respect to known super-resolution techniques, and a good robustness against noise. Second, real data coming from different videos are considered, trying to solve the major details of the objects in motion.


2014 ◽  
Vol 981 ◽  
pp. 352-355 ◽  
Author(s):  
Ji Zhou Wei ◽  
Shu Chun Yu ◽  
Wen Fei Dong ◽  
Chao Feng ◽  
Bing Xie

A stereo matching algorithm was proposed based on pyramid algorithm and dynamic programming. High and low resolution images was computed by pyramid algorithm, and then candidate control points were stroke on low-resolution image, and final control points were stroke on the high-resolution images. Finally, final control points were used in directing stereo matching based on dynamic programming. Since the striking of candidate control points on low-resolution image, the time is greatly reduced. Experiments show that the proposed method has a high matching precision.


2013 ◽  
Vol 710 ◽  
pp. 419-423
Author(s):  
Juan Ning Zhao ◽  
Xiao Na Dong ◽  
Suo Chao Yuan

The focused plenoptic cameras based on the rays resampling of microlens array on the image formed by main lens, captures radiation on sensor includes the 4D radiance information.Because of both spatial and angular information are recorded on the sensor of fixed pixels number, when rendering image with fixed view there are limited pixels from sub_image are adopted, this results in disappointingly low resolution of the result image. Our approach presents a new approach to rendering an image with higher spatial resolution than the traditional approach, allowing us to render high resolution images that meet the high requirements.


Author(s):  
Zheng Wang ◽  
Mang Ye ◽  
Fan Yang ◽  
Xiang Bai ◽  
Shin'ichi Satoh

Person re-identification (REID) is an important task in video surveillance and forensics applications. Most of previous approaches are based on a key assumption that all person images have uniform and sufficiently high resolutions. Actually, various low-resolutions and scale mismatching always exist in open world REID. We name this kind of problem as Scale-Adaptive Low Resolution Person Re-identification (SALR-REID). The most intuitive way to address this problem is to increase various low-resolutions (not only low, but also with different scales) to a uniform high-resolution. SR-GAN is one of the most competitive image super-resolution deep networks, designed with a fixed upscaling factor. However, it is still not suitable for SALR-REID task, which requires a network not only synthesizing high-resolution images with different upscaling factors, but also extracting discriminative image feature for judging person’s identity. (1) To promote the ability of scale-adaptive upscaling, we cascade multiple SRGANs in series. (2) To supplement the ability of image feature representation, we plug-in a reidentification network. With a unified formulation, a Cascaded Super-Resolution GAN (CSR-GAN) framework is proposed. Extensive evaluations on two simulated datasets and one public dataset demonstrate the advantages of our method over related state-of-the-art methods.


Sign in / Sign up

Export Citation Format

Share Document