scholarly journals An Operational Framework for Mapping Irrigated Areas at Plot Scale Using Sentinel-1 and Sentinel-2 Data

2021 ◽  
Vol 13 (13) ◽  
pp. 2584
Author(s):  
Hassan Bazzi ◽  
Nicolas Baghdadi ◽  
Ghaith Amin ◽  
Ibrahim Fayad ◽  
Mehrez Zribi ◽  
...  

In this study, we present an operational methodology for mapping irrigated areas at plot scale, which overcomes the limitation of terrain data availability, using Sentinel-1 (S1) C-band SAR (synthetic-aperture radar) and Sentinel-2 (S2) optical time series. The method was performed over a study site located near Orléans city of north-central France for four years (2017 until 2020). First, training data of irrigated and non-irrigated plots were selected using predefined selection criteria to obtain sufficient samples of irrigated and non-irrigated plots each year. The training data selection criteria is based on two irrigation metrics; the first one is a SAR-based metric derived from the S1 time series and the second is an optical-based metric derived from the NDVI (normalized difference vegetation index) time series of the S2 data. Using the newly developed irrigation event detection model (IEDM) applied for all S1 time series in VV (Vertical-Vertical) and VH (Vertical-Horizontal) polarizations, an irrigation weight metric was calculated for each plot. Using the NDVI time series, the maximum NDVI value achieved in the crop cycle was considered as a second selection metric. By fixing threshold values for both metrics, a dataset of irrigated and non-irrigated samples was constructed each year. Later, a random forest classifier (RF) was built for each year in order to map the summer agricultural plots into irrigated/non-irrigated. The irrigation classification model uses the S1 and NDVI time series calculated over the selected training plots. Finally, the proposed irrigation classifier was validated using real in situ data collected each year. The results show that, using the proposed classification procedure, the overall accuracy for the irrigation classification reaches 84.3%, 93.0%, 81.8%, and 72.8% for the years 2020, 2019, 2018, and 2017, respectively. The comparison between our proposed classification approach and the RF classifier built directly from in situ data showed that our approach reaches an accuracy nearly similar to that obtained using in situ RF classifiers with a difference in overall accuracy not exceeding 6.2%. The analysis of the obtained classification accuracies of the proposed method with precipitation data revealed that years with higher rainfall amounts during the summer crop-growing season (irrigation period) had lower overall accuracy (72.8% for 2017) whereas years encountering a drier summer had very good accuracy (93.0% for 2019).

2019 ◽  
Vol 11 (11) ◽  
pp. 1370 ◽  
Author(s):  
Petar Dimitrov ◽  
Qinghan Dong ◽  
Herman Eerens ◽  
Alexander Gikov ◽  
Lachezar Filchev ◽  
...  

This paper presents the results of a sub-pixel classification of crop types in Bulgaria from PROBA-V 100 m normalized difference vegetation index (NDVI) time series. Two sub-pixel classification methods, artificial neural network (ANN) and support vector regression (SVR) were used where the output was a set of area fraction images (AFIs) at 100 m resolution with pixels containing estimated area fractions of each class. High-resolution maps of two test sites derived from Sentinel-2 classifications were used to obtain training data for the sub-pixel classifications. The estimated area fractions have a good correspondence with the true area fractions when aggregated to regions of 10 × 10 km2, especially when the SVR method was used. For the five dominant classes in the test sites the R2 obtained after the aggregation was 86% (winter cereals), 81% (sunflower), 92% (broad-leaved forest), 89% (maize), and 67% (grasslands) when the SVR method was used.


2020 ◽  
Vol 12 (14) ◽  
pp. 2195 ◽  
Author(s):  
Blanka Vajsová ◽  
Dominique Fasbender ◽  
Csaba Wirnhardt ◽  
Slavko Lemajic ◽  
Wim Devos

The availability of large amounts of Sentinel-2 data has been a trigger for its increasing exploitation in various types of applications. It is, therefore, of importance to understand the limits above which these data still guarantee a meaningful outcome. This paper proposes a new method to quantify and specify restrictions of the Sentinel-2 imagery in the context of checks by monitoring, a newly introduced control approach within the European Common Agriculture Policy framework. The method consists of a comparison of normalized difference vegetation index (NDVI) time series constructed from data of different spatial resolution to estimate the performance and limits of the coarser one. Using similarity assessment of Sentinel-2 (10 m pixel size) and PlanetScope (3 m pixel size) NDVI time series, it was estimated that for 10% out of 867 fields less than 0.5 ha in size, Sentinel-2 data did not provide reliable evidence of the activity or state of the agriculture field over a given timeframe. Statistical analysis revealed that the number of clean or full pixels and the proportion of pixels lost after an application of a 5-m (1/2 pixel) negative buffer are the geospatial parameters of the field that have the highest influence on the ability of the Sentinel-2 data to qualify the field’s state in time. We specified the following limiting criteria: at least 8 full pixels inside a border and less than 60% of pixels lost. It was concluded that compliance with the criteria still assures a high level of extracted information reliability. Our research proved the promising potential, which was higher than anticipated, of Sentinel-2 data for the continuous state assessment of small fields. The method could be applied to other sensors and indicators.


2019 ◽  
Vol 11 (21) ◽  
pp. 2479 ◽  
Author(s):  
Huiying Li ◽  
Mingming Jia ◽  
Rong Zhang ◽  
Yongxing Ren ◽  
Xin Wen

Information on mangrove species composition and distribution is key to studying functions of mangrove ecosystems and securing sustainable mangrove conservation. Even though remote sensing technology is developing rapidly currently, mapping mangrove forests at the species level based on freely accessible images is still a great challenge. This study built a Sentinel-2 normalized difference vegetation index (NDVI) time series (from 2017-01-01 to 2018-12-31) to represent phenological trajectories of mangrove species and then demonstrated the feasibility of phenology-based mangrove species classification using the random forest algorithm in the Google Earth Engine platform. It was found that (i) in Zhangjiang estuary, the phenological trajectories (NDVI time series) of different mangrove species have great differences; (ii) the overall accuracy and Kappa confidence of the classification map is 84% and 0.84, respectively; and (iii) Months in late winter and early spring play critical roles in mangrove species mapping. This is the first study to use phonological signatures in discriminating mangrove species. The methodology presented can be used as a practical guideline for the mapping of mangrove or other vegetation species in other regions. However, future work should pay attention to various phenological trajectories of mangrove species in different locations.


2020 ◽  
Vol 12 (24) ◽  
pp. 4010
Author(s):  
Xiang Liu ◽  
Huiyu Liu ◽  
Pawanjeet Datta ◽  
Julian Frey ◽  
Barbara Koch

Spartina alterniflora (S. alterniflora) is one of the worst plant invaders in the coastal wetlands of China. Accurate and repeatable mapping of S. alterniflora invasion is essential to develop cost-effective management strategies for conserving native biodiversity. Traditional remote-sensing-based mapping methods require a lot of fieldwork for sample collection. Moreover, our ability to detect this invasive species is still limited because of poor spectral separability between S. alterniflora and its co-dominant native plants. Therefore, we proposed a novel scheme that uses an ensemble one-class classifier (EOCC) in combination with phenological Normalized Difference Vegetation Index (NDVI) time-series analysis (TSA) to detect S. alterniflora. We evaluated the performance of the EOCC algorithm in two scenarios, i.e., single-scene analysis (SSA) and NDVI-TSA in the core zones of Yancheng National Natural Reserve (YNNR). Meanwhile, a fully supervised classifier support vector machine (SVM) was tested in the two scenarios for comparison. With these scenarios, the crucial phenological stages and the advantage of phenological NDVI-TSA in S. alterniflora recognition were also investigated. Results indicated the EOCC using only positive training data performed similarly well with the SVM trained on complete training data in the YNNR. Moreover, the EOCC algorithm presented a more robust transferability with notably higher classification accuracy than the SVM when being transferred to a second site, without a second training. Furthermore, when combined with the phenological NDVI-TSA, the EOCC algorithm presented more balanced sensitivity–specificity result, showing slightly better transferability than it performed in the best phenological stage (i.e., senescence stage of November). The achieved results (overall accuracy (OA), Kappa, and true skill statistic (TSS) were 92.92%, 0.843, and 0.834 for the YNNR, and OA, Kappa, and TSS were 90.94%, 0.815, and 0.825 for transferability to the non-training site) suggest that our detection scheme has a high potential for the mapping of S. alterniflora across different areas, and the EOCC algorithm can be a viable alternative to traditional supervised classification method for invasive plant detection.


2021 ◽  
Vol 14 (1) ◽  
pp. 12
Author(s):  
Monica Demetriou ◽  
Dionysios E. Raitsos ◽  
Antonia Kournopoulou ◽  
Manolis Mandalakis ◽  
Spyros Sfenthourakis ◽  
...  

Alterations in phytoplankton biomass, community structure and timing of their growth (phenology), are directly implicated in the carbon cycle and energy transfer to higher trophic levels of the marine food web. Due to the lack of long-term in situ datasets, there is very little information on phytoplankton seasonal succession in Cyprus (eastern Mediterranean Sea). On the other hand, satellite-derived measurements of ocean colour can only provide long-term time series of chlorophyll (an index of phytoplankton biomass) up to the first optical depth (surface waters). The coupling of both means of observations is essential for understanding phytoplankton dynamics and their response to environmental change. Here, we use 23 years of remotely sensed, regionally tuned ocean-colour observations, along with a unique time series of in situ phytoplankton pigment composition data, collected in coastal waters of Cyprus during 2016. The satellite observations show an initiation of phytoplankton growth period in November, a peak in February and termination in April, with an overall mean duration of ~4 months. An in-depth exploration of in situ total Chl-a concentration and phytoplankton pigments revealed that pico- and nano-plankton cells dominated the phytoplankton community. The growth peak in February was dominated by nanophytoplankton and potentially larger diatoms (pigments of 19’ hexanoyloxyfucoxanthin and fucoxanthin, respectively), in the 0–20 m layer. The highest total Chl-a concentration was recorded at a station off Akrotiri peninsula in the south, where strong coastal upwelling has been reported. Another station in the southern part, located next to a fish farm, showed a higher contribution of picophytoplankton during the most oligotrophic period (summer). Our results highlight the importance of using available in situ data coupled to ocean-colour remote sensing, for monitoring marine ecosystems in areas with limited in situ data availability.


Land ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 325
Author(s):  
Rosa Coluzzi ◽  
Simonetta Fascetti ◽  
Vito Imbrenda ◽  
Santain Settimio Pino Italiano ◽  
Francesco Ripullone ◽  
...  

The use of satellite data to detect forest areas impacted by extreme events, such as droughts, heatwaves, or fires is largely documented, however, the use of these data to identify the heterogeneity of the forests’ response to determine fine scale spatially irregular damage is less explored. This paper evaluates the health status of forests in southern Italy affected by adverse climate conditions during the hot and dry summer of 2017, using Sentinel-2 images (10m) and in situ data. Our analysis shows that the post-event—NDVI (Normalized Difference Vegetation Index) decrease, observed in five experimental sites, well accounts for the heterogeneity of the local response to the climate event evaluated in situ through the Mannerucci and the Raunkiaer methods. As a result, Sentinel-2 data can be effectively integrated with biological information from field surveys to introduce continuity in the estimation of climate change impacts even in very heterogeneous areas whose details could not be captured by lower resolution observations. This integration appears to be a successful strategy in the study of the relationships between the climate and forests from a dynamical perspective.


OENO One ◽  
2019 ◽  
Vol 53 (1) ◽  
Author(s):  
Nicolas Devaux ◽  
Thomas Crestey ◽  
Corentin Leroux ◽  
Bruno Tisseyre

Aim: The aim of this short note is to provide first insights into the ability of Sentinel-2 images to monitor vine growth across a whole season. It focuses on verifying the practical temporal resolution that can be reached with Sentinel-2 images, the main stages of Mediterranean vineyard development as well as potential relevant agronomic information that can be seen on the temporal vegetation curves arising from Sentinel-2 images.Methods and results: The study was carried out in 2017 in a production vineyard located in southern France, 2 km from the Mediterranean seashore. Sentinel-2 images acquired during the whole vine growing cycle were considered, i.e. between the 3rd of March 2017 and the 10th of October 2017. The images were used to compute the classical normalized difference vegetation index (NDVI). Time series of NDVI values were analyzed on four blocks chosen for exhibiting different features, e.g. age, missing plants, weeding practices. The practical time lag between two usable images was closer to 16 days than to the 10 theoretical days (with only one satellite available at the date of the experiment), i.e. near 60% of the theoretical one. Results show that it might be possible to identify i) the main steps of vine development (e.g. budburst, growth, trimming, growth stop and senescence), ii) weed management and inter-row management practices, and iii) possible reasons for significant inter-block differences in vegetative expression (e.g. young vines that have recently been planted, low-productive blocks affected by many missing vines).Conclusions: Although this experiment was conducted at a time when Sentinel-2b was not fully operational, results showed that a sufficient number of usable images was available to monitor vine development. The availability of two Sentinel satellites (2a and 2b) in upcoming seasons should increase the number of usable images and the temporal resolution of the time series. This study also showed the limitations of the Sentinel-2 images’ resolution to provide within-block information in the case of small blocks or blocks with complex borders or both.Significance and impact of the study: This technical note demonstrated the potential of Sentinel-2 images to characterize vineyard blocks’ vigor and to monitor winegrowers’ practices at a territorial (regional) scale. The impact of management operations such as weeding and trimming, along with their incidence on canopy size, were observed on the NDVI time series. Some relevant parameters (slope, maximum values) may be derived from the NDVI time series, providing new insights into the monitoring of vineyards at a large scale. These results provided areas for further investigation, especially regarding the development of new indicators to characterize block-climate relationships.


2021 ◽  
Vol 13 (12) ◽  
pp. 2301
Author(s):  
Zander Venter ◽  
Markus Sydenham

Land cover maps are important tools for quantifying the human footprint on the environment and facilitate reporting and accounting to international agreements addressing the Sustainable Development Goals. Widely used European land cover maps such as CORINE (Coordination of Information on the Environment) are produced at medium spatial resolutions (100 m) and rely on diverse data with complex workflows requiring significant institutional capacity. We present a 10 m resolution land cover map (ELC10) of Europe based on a satellite-driven machine learning workflow that is annually updatable. A random forest classification model was trained on 70K ground-truth points from the LUCAS (Land Use/Cover Area Frame Survey) dataset. Within the Google Earth Engine cloud computing environment, the ELC10 map can be generated from approx. 700 TB of Sentinel imagery within approx. 4 days from a single research user account. The map achieved an overall accuracy of 90% across eight land cover classes and could account for statistical unit land cover proportions within 3.9% (R2 = 0.83) of the actual value. These accuracies are higher than that of CORINE (100 m) and other 10 m land cover maps including S2GLC and FROM-GLC10. Spectro-temporal metrics that capture the phenology of land cover classes were most important in producing high mapping accuracies. We found that the atmospheric correction of Sentinel-2 and the speckle filtering of Sentinel-1 imagery had a minimal effect on enhancing the classification accuracy (< 1%). However, combining optical and radar imagery increased accuracy by 3% compared to Sentinel-2 alone and by 10% compared to Sentinel-1 alone. The addition of auxiliary data (terrain, climate and night-time lights) increased accuracy by an additional 2%. By using the centroid pixels from the LUCAS Copernicus module polygons we increased accuracy by <1%, revealing that random forests are robust against contaminated training data. Furthermore, the model requires very little training data to achieve moderate accuracies—the difference between 5K and 50K LUCAS points is only 3% (86 vs. 89%). This implies that significantly less resources are necessary for making in situ survey data (such as LUCAS) suitable for satellite-based land cover classification. At 10 m resolution, the ELC10 map can distinguish detailed landscape features like hedgerows and gardens, and therefore holds potential for aerial statistics at the city borough level and monitoring property-level environmental interventions (e.g., tree planting). Due to the reliance on purely satellite-based input data, the ELC10 map can be continuously updated independent of any country-specific geographic datasets.


2018 ◽  
Vol 7 (10) ◽  
pp. 405 ◽  
Author(s):  
Urška Kanjir ◽  
Nataša Đurić ◽  
Tatjana Veljanovski

The European Common Agricultural Policy (CAP) post-2020 timeframe reform will reshape the agriculture land use control procedures from a selected risk fields-based approach into an all-inclusive one. The reform fosters the use of Sentinel data with the objective of enabling greater transparency and comparability of CAP results in different Member States. In this paper, we investigate the analysis of a time series approach using Sentinel-2 images and the suitability of the BFAST (Breaks for Additive Season and Trend) Monitor method to detect changes that correspond to land use anomaly observations in the assessment of agricultural parcel management activities. We focus on identifying certain signs of ineligible (inconsistent) use in permanent meadows and crop fields in one growing season, and in particular those that can be associated with time-defined greenness (vegetation vigor). Depending on the requirements of the BFAST Monitor method and currently time-limited Sentinel-2 dataset for the reliable anomaly study, we introduce customized procedures to support and verify the BFAST Monitor anomaly detection results using the analysis of NDVI (Normalized Difference Vegetation Index) object-based temporal profiles and time-series standard deviation output, where geographical objects of interest are parcels of particular land use. The validation of land use candidate anomalies in view of land use ineligibilities was performed with the information on declared land annual use and field controls, as obtained in the framework of subsidy granting in Slovenia. The results confirm that the proposed combined approach proves efficient to deal with short time series and yields high accuracy rates in monitoring agricultural parcel greenness. As such it can already be introduced to help the process of agricultural land use control within certain CAP activities in the preparation and adaptation phase.


Sign in / Sign up

Export Citation Format

Share Document