scholarly journals Assessing Spatial Limits of Sentinel-2 Data on Arable Crops in the Context of Checks by Monitoring

2020 ◽  
Vol 12 (14) ◽  
pp. 2195 ◽  
Author(s):  
Blanka Vajsová ◽  
Dominique Fasbender ◽  
Csaba Wirnhardt ◽  
Slavko Lemajic ◽  
Wim Devos

The availability of large amounts of Sentinel-2 data has been a trigger for its increasing exploitation in various types of applications. It is, therefore, of importance to understand the limits above which these data still guarantee a meaningful outcome. This paper proposes a new method to quantify and specify restrictions of the Sentinel-2 imagery in the context of checks by monitoring, a newly introduced control approach within the European Common Agriculture Policy framework. The method consists of a comparison of normalized difference vegetation index (NDVI) time series constructed from data of different spatial resolution to estimate the performance and limits of the coarser one. Using similarity assessment of Sentinel-2 (10 m pixel size) and PlanetScope (3 m pixel size) NDVI time series, it was estimated that for 10% out of 867 fields less than 0.5 ha in size, Sentinel-2 data did not provide reliable evidence of the activity or state of the agriculture field over a given timeframe. Statistical analysis revealed that the number of clean or full pixels and the proportion of pixels lost after an application of a 5-m (1/2 pixel) negative buffer are the geospatial parameters of the field that have the highest influence on the ability of the Sentinel-2 data to qualify the field’s state in time. We specified the following limiting criteria: at least 8 full pixels inside a border and less than 60% of pixels lost. It was concluded that compliance with the criteria still assures a high level of extracted information reliability. Our research proved the promising potential, which was higher than anticipated, of Sentinel-2 data for the continuous state assessment of small fields. The method could be applied to other sensors and indicators.

2019 ◽  
Vol 11 (11) ◽  
pp. 1370 ◽  
Author(s):  
Petar Dimitrov ◽  
Qinghan Dong ◽  
Herman Eerens ◽  
Alexander Gikov ◽  
Lachezar Filchev ◽  
...  

This paper presents the results of a sub-pixel classification of crop types in Bulgaria from PROBA-V 100 m normalized difference vegetation index (NDVI) time series. Two sub-pixel classification methods, artificial neural network (ANN) and support vector regression (SVR) were used where the output was a set of area fraction images (AFIs) at 100 m resolution with pixels containing estimated area fractions of each class. High-resolution maps of two test sites derived from Sentinel-2 classifications were used to obtain training data for the sub-pixel classifications. The estimated area fractions have a good correspondence with the true area fractions when aggregated to regions of 10 × 10 km2, especially when the SVR method was used. For the five dominant classes in the test sites the R2 obtained after the aggregation was 86% (winter cereals), 81% (sunflower), 92% (broad-leaved forest), 89% (maize), and 67% (grasslands) when the SVR method was used.


2020 ◽  
Vol 12 (12) ◽  
pp. 2015 ◽  
Author(s):  
Manuel Ángel Aguilar ◽  
Rafael Jiménez-Lao ◽  
Abderrahim Nemmaoui ◽  
Fernando José Aguilar ◽  
Dilek Koc-San ◽  
...  

Remote sensing techniques based on medium resolution satellite imagery are being widely applied for mapping plastic covered greenhouses (PCG). This article aims at testing the spectral consistency of surface reflectance values of Sentinel-2 MSI (S2 L2A) and Landsat 8 OLI (L8 L2 and the pansharpened and atmospherically corrected product from L1T product; L8 PANSH) data in PCG areas located in Spain, Morocco, Italy and Turkey. The six corresponding bands of S2 and L8, together with the normalized difference vegetation index (NDVI), were generated through an OBIA approach for each PCG study site. The coefficient of determination (r2) and the root mean square error (RMSE) were computed in sixteen cloud-free simultaneously acquired image pairs from the four study sites to evaluate the coherence between the two sensors. It was found that the S2 and L8 correlation (r2 > 0.840, RMSE < 9.917%) was quite good in most bands and NDVI. However, the correlation of the two sensors fluctuated between study sites, showing occasional sun glint effects on PCG roofs related to the sensor orbit and sun position. Moreover, higher surface reflectance discrepancies between L8 L2 and L8 PANSH data, mainly in the visible bands, were always observed in areas with high-level aerosol values derived from the aerosol quality band included in the L8 L2 product (SR aerosol). In this way, the consistency between L8 PANSH and S2 L2A was improved mainly in high-level aerosol areas according to the SR aerosol band.


2018 ◽  
Vol 7 (10) ◽  
pp. 405 ◽  
Author(s):  
Urška Kanjir ◽  
Nataša Đurić ◽  
Tatjana Veljanovski

The European Common Agricultural Policy (CAP) post-2020 timeframe reform will reshape the agriculture land use control procedures from a selected risk fields-based approach into an all-inclusive one. The reform fosters the use of Sentinel data with the objective of enabling greater transparency and comparability of CAP results in different Member States. In this paper, we investigate the analysis of a time series approach using Sentinel-2 images and the suitability of the BFAST (Breaks for Additive Season and Trend) Monitor method to detect changes that correspond to land use anomaly observations in the assessment of agricultural parcel management activities. We focus on identifying certain signs of ineligible (inconsistent) use in permanent meadows and crop fields in one growing season, and in particular those that can be associated with time-defined greenness (vegetation vigor). Depending on the requirements of the BFAST Monitor method and currently time-limited Sentinel-2 dataset for the reliable anomaly study, we introduce customized procedures to support and verify the BFAST Monitor anomaly detection results using the analysis of NDVI (Normalized Difference Vegetation Index) object-based temporal profiles and time-series standard deviation output, where geographical objects of interest are parcels of particular land use. The validation of land use candidate anomalies in view of land use ineligibilities was performed with the information on declared land annual use and field controls, as obtained in the framework of subsidy granting in Slovenia. The results confirm that the proposed combined approach proves efficient to deal with short time series and yields high accuracy rates in monitoring agricultural parcel greenness. As such it can already be introduced to help the process of agricultural land use control within certain CAP activities in the preparation and adaptation phase.


2012 ◽  
Vol 4 (5) ◽  
pp. 897 ◽  
Author(s):  
Luana Portz ◽  
Laurindo Antonio Guasselli ◽  
Iran Carlos Stalliviere Corrêa

Neste estudo foram analisadas as variações espaciais e temporais do Índice de Vegetação por Diferença Normalizada (NDVI) na lagoa do Peixe, no litoral do Rio Grande do Sul. Para alcançar o objetivo proposto foram utilizadas imagens de satélite Landsat TM5, entre os anos de 1986 e 2009, seguindo os procedimentos de elaboração de mosaico das cenas, verificação de campo, geração das imagens de NDVI, análise de dados de precipitação acumulada, geração dos mapas finais e análise qualitativa dos resultados obtidos. Os resultados obtidos com a geração de imagens de NDVI mostraram que a análise espaço-temporal associada aos dados de precipitação fornecem informações de valiosa importância sobre a dinâmica da lagoa do Peixe. A importância  do NDVI neste estudo se destaca pelo contraste existente entre água e vegetação, realçando os diferentes níveis de água sobre os bancos vegetados presentes na borda oeste da lagoa. Estes bancos são um importante controlador da dinâmica de circulação lagunar, onde em períodos de seca ocorre a compartimentação da lagoa, enquanto que em épocas de grande precipitação e acumulação de água estes bancos ficam submersos. Palavras-chave: Landsat TM, série temporal, Parque Nacional.  Spatial and Temporal Variation of NDVI in the Peixe Lagoon, RS  ABSTRACTThis paper analyzed the spatial and temporal variation of Normalized Difference Vegetation Index (NDVI) in the Peixe lagoon. To reach the purpose,  the NDVI time-series were collected from the study area between year 1986 and 2009 derived from Landsat TM5 satellite. The adopted methodology may be subdivided into the following steps: mosaic of scenes, fild verification, generation of NDVI time-series and qualitative analysis, in addition, it was complemented with rainfall analysis.  The results obtained with the NDVI time-series associated with the rainfall analysis data provide valuable information about the environmental dynamics. The importance of NDVI in this work is given by the contrast between water and vegetation, highlighting the different levels of water over vegetated banks present on the western edge of the lagoon. These banks are an important driver circulation in the lagoon, where in periods of drought occurs the partitioning of the lagoo, while in periods of high precipitation and accumulation of water they are submerged.    Keywords: Landsat TM, time-series, National Park.


2020 ◽  
Vol 12 (21) ◽  
pp. 3524
Author(s):  
Feng Gao ◽  
Martha C. Anderson ◽  
W. Dean Hively

Cover crops are planted during the off-season to protect the soil and improve watershed management. The ability to map cover crop termination dates over agricultural landscapes is essential for quantifying conservation practice implementation, and enabling estimation of biomass accumulation during the active cover period. Remote sensing detection of end-of-season (termination) for cover crops has been limited by the lack of high spatial and temporal resolution observations and methods. In this paper, a new within-season termination (WIST) algorithm was developed to map cover crop termination dates using the Vegetation and Environment monitoring New Micro Satellite (VENµS) imagery (5 m, 2 days revisit). The WIST algorithm first detects the downward trend (senescent period) in the Normalized Difference Vegetation Index (NDVI) time-series and then refines the estimate to the two dates with the most rapid rate of decrease in NDVI during the senescent period. The WIST algorithm was assessed using farm operation records for experimental fields at the Beltsville Agricultural Research Center (BARC). The crop termination dates extracted from VENµS and Sentinel-2 time-series in 2019 and 2020 were compared to the recorded termination operation dates. The results show that the termination dates detected from the VENµS time-series (aggregated to 10 m) agree with the recorded harvest dates with a mean absolute difference of 2 days and uncertainty of 4 days. The operational Sentinel-2 time-series (10 m, 4–5 days revisit) also detected termination dates at BARC but had 7% missing and 10% false detections due to less frequent temporal observations. Near-real-time simulation using the VENµS time-series shows that the average lag times of termination detection are about 4 days for VENµS and 8 days for Sentinel-2, not including satellite data latency. The study demonstrates the potential for operational mapping of cover crop termination using high temporal and spatial resolution remote sensing data.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4834 ◽  
Author(s):  
Pengyu Hao ◽  
Mingquan Wu ◽  
Zheng Niu ◽  
Li Wang ◽  
Yulin Zhan

Timely and accurate crop type distribution maps are an important inputs for crop yield estimation and production forecasting as multi-temporal images can observe phenological differences among crops. Therefore, time series remote sensing data are essential for crop type mapping, and image composition has commonly been used to improve the quality of the image time series. However, the optimal composition period is unclear as long composition periods (such as compositions lasting half a year) are less informative and short composition periods lead to information redundancy and missing pixels. In this study, we initially acquired daily 30 m Normalized Difference Vegetation Index (NDVI) time series by fusing MODIS, Landsat, Gaofen and Huanjing (HJ) NDVI, and then composited the NDVI time series using four strategies (daily, 8-day, 16-day, and 32-day). We used Random Forest to identify crop types and evaluated the classification performances of the NDVI time series generated from four composition strategies in two studies regions from Xinjiang, China. Results indicated that crop classification performance improved as crop separabilities and classification accuracies increased, and classification uncertainties dropped in the green-up stage of the crops. When using daily NDVI time series, overall accuracies saturated at 113-day and 116-day in Bole and Luntai, and the saturated overall accuracies (OAs) were 86.13% and 91.89%, respectively. Cotton could be identified 40∼60 days and 35∼45 days earlier than the harvest in Bole and Luntai when using daily, 8-day and 16-day composition NDVI time series since both producer’s accuracies (PAs) and user’s accuracies (UAs) were higher than 85%. Among the four compositions, the daily NDVI time series generated the highest classification accuracies. Although the 8-day, 16-day and 32-day compositions had similar saturated overall accuracies (around 85% in Bole and 83% in Luntai), the 8-day and 16-day compositions achieved these accuracies around 155-day in Bole and 133-day in Luntai, which were earlier than the 32-day composition (170-day in both Bole and Luntai). Therefore, when the daily NDVI time series cannot be acquired, the 16-day composition is recommended in this study.


2019 ◽  
Vol 11 (21) ◽  
pp. 2497
Author(s):  
Laura Recuero ◽  
Javier Litago ◽  
Jorge E. Pinzón ◽  
Margarita Huesca ◽  
Maria C. Moyano ◽  
...  

Vegetation seasonality assessment through remote sensing data is crucial to understand ecosystem responses to climatic variations and human activities at large-scales. Whereas the study of the timing of phenological events showed significant advances, their recurrence patterns at different periodicities has not been widely study, especially at global scale. In this work, we describe vegetation oscillations by a novel quantitative approach based on the spectral analysis of Normalized Difference Vegetation Index (NDVI) time series. A new set of global periodicity indicators permitted to identify different seasonal patterns regarding the intra-annual cycles (the number, amplitude, and stability) and to evaluate the existence of pluri-annual cycles, even in those regions with noisy or low NDVI. Most of vegetated land surface (93.18%) showed one intra-annual cycle whereas double and triple cycles were found in 5.58% of the land surface, mainly in tropical and arid regions along with agricultural areas. In only 1.24% of the pixels, the seasonality was not statistically significant. The highest values of amplitude and stability were found at high latitudes in the northern hemisphere whereas lowest values corresponded to tropical and arid regions, with the latter showing more pluri-annual cycles. The indicator maps compiled in this work provide highly relevant and practical information to advance in assessing global vegetation dynamics in the context of global change.


2019 ◽  
Vol 11 (21) ◽  
pp. 2515 ◽  
Author(s):  
Ana Navarro ◽  
Joao Catalao ◽  
Joao Calvao

In Portugal, cork oak (Quercus suber L.) stands cover 737 Mha, being the most predominant species of the montado agroforestry system, contributing to the economic, social and environmental development of the country. Cork oak decline is a known problem since the late years of the 19th century that has recently worsened. The causes of oak decline seem to be a result of slow and cumulative processes, although the role of each environmental factor is not yet established. The availability of Sentinel-2 high spatial and temporal resolution dense time series enables monitoring of gradual processes. These processes can be monitored using spectral vegetation indices (VI) as their temporal dynamics are expected to be related with green biomass and photosynthetic efficiency. The Normalized Difference Vegetation Index (NDVI) is sensitive to structural canopy changes, however it tends to saturate at moderate-to-dense canopies. Modified VI have been proposed to incorporate the reflectance in the red-edge spectral region, which is highly sensitive to chlorophyll content while largely unaffected by structural properties. In this research, in situ data on the location and vitality status of cork oak trees are used to assess the correlation between chlorophyll indices (CI) and NDVI time series trends and cork oak vitality at the tree level. Preliminary results seem to be promising since differences between healthy and unhealthy (diseased/dead) trees were observed.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Long Zhao ◽  
Pan Zhang ◽  
Xiaoyi Ma ◽  
Zhuokun Pan

A timely and accurate understanding of land cover change has great significance in management of area resources. To explore the application of a daily normalized difference vegetation index (NDVI) time series in land cover classification, the present study used HJ-1 data to derive a daily NDVI time series by pretreatment. Different classifiers were then applied to classify the daily NDVI time series. Finally, the daily NDVI time series were classified based on multiclassifier combination. The results indicate that support vector machine (SVM), spectral angle mapper, and classification and regression tree classifiers can be used to classify daily NDVI time series, with SVM providing the optimal classification. The classifiers of K-means and Mahalanobis distance are not suited for classification because of their classification accuracy and mechanism, respectively. This study proposes a method of dimensionality reduction based on the statistical features of daily NDVI time series for classification. The method can be applied to land resource information extraction. In addition, an improved multiclassifier combination is proposed. The classification results indicate that the improved multiclassifier combination is superior to different single classifier combinations, particularly regarding subclassifiers with greater differences.


Sign in / Sign up

Export Citation Format

Share Document