scholarly journals Global Sensitivity Analysis for Canopy Reflectance and Vegetation Indices of Mangroves

2021 ◽  
Vol 13 (13) ◽  
pp. 2617
Author(s):  
Chunyue Niu ◽  
Stuart Phinn ◽  
Chris Roelfsema

Remote sensing has been applied to map the extent and biophysical properties of mangroves. However, the impact of several critical factors, such as the fractional cover and leaf-to-total area ratio of mangroves, on their canopy reflectance have rarely been reported. In this study, a systematic global sensitivity analysis was performed for mangroves based on a one-dimensional canopy reflectance model. Different scenarios such as sparse or dense canopies were set up to evaluate the impact of various biophysical and environmental factors, together with their ranges and probability distributions, on simulated canopy reflectance spectra and selected Sentinel-2A vegetation indices of mangroves. A variance-based method and a density-based method were adopted to compare the computed sensitivity indices. Our results showed that the fractional cover and leaf-to-total area ratio of mangrove crowns were among the most influential factors for all examined scenarios. As for other factors, plant area index and water depth were influential for sparse canopies while leaf biochemical properties and inclination angles were more influential for dense canopies. Therefore, these influential factors may need attention when mapping the biophysical properties of mangroves such as leaf area index. Moreover, a tailored sensitivity analysis is recommended for a specific mapping application as the computed sensitivity indices may be different if a specific input configuration and sensitivity analysis method are adopted.

2021 ◽  
Author(s):  
Emilie Rouzies ◽  
Claire Lauvernet ◽  
Bruno Sudret ◽  
Arthur Vidard

Abstract. Pesticide transfers in agricultural catchments are responsible for diffuse but major risks to water quality. Spatialized pesticide transfer models are useful tools to assess the impact of the structure of the landscape on water quality. Before considering using these tools in operational contexts, quantifying their uncertainties is a preliminary necessary step. In this study, we explored how global sensitivity analysis can be applied to the recent PESHMELBA pesticide transfer model to quantify uncertainties on transfer simulations. We set up a virtual catchment based on a real one and we compared different approaches for sensitivity analysis that could handle the specificities of the model: high number of input parameters, limited size of sample due to computational cost and spatialized output. We compared Sobol' indices obtained from Polynomial Chaos Expansion, HSIC dependence measures and feature importance measures obtained from Random Forest surrogate model. Results showed the consistency of the different methods and they highlighted the relevance of Sobol' indices to capture interactions between parameters. Sensitivity indices were first computed for each landscape element (site sensitivity indices). Second, we proposed to aggregate them at the hillslope and the catchment scale in order to get a summary of the model sensitivity and a valuable insight into the model hydrodynamical behaviour. The methodology proposed in this paper may be extended to other modular and distributed hydrological models as there has been a growing interest in these methods in recent years.


2019 ◽  
Vol 11 (21) ◽  
pp. 2547 ◽  
Author(s):  
Siheng Wang ◽  
Dong Yang ◽  
Zhen Li ◽  
Liangyun Liu ◽  
Changping Huang ◽  
...  

Remote sensing (RS) provides operational monitoring of terrestrial vegetation. For optical RS, vegetation information is generally derived from surface reflectance (ρ). More generally, vegetation indices (VIs) are built on the basis of ρ as proxies for vegetation traits. At canopy level, ρ can be affected by a variety of factors, including leaf constituents, canopy structure, background reflectivity, and sun-sensor geometry. Consequently, VIs are mixtures of different information. In this study, a global sensitivity analysis (GSA) is made for several commonly used satellite-derived VIs in order to better understand the application of these VIs at large scales. The sensitivities of VIs to different parameters are analyzed on the basis of PROSPECT-SAIL (PROSAIL) radiative transfer model simulations, which apply for homogeneous canopies, and random forest (RF) learning. Specifically, combined factors such as canopy chlorophyll content (CCC) and canopy water content (CWC) are introduced in the RF-based GSA. We find that for most VIs, the leaf area index is the most influential factor, while the broad-band sensor-derived enhanced VI (EVI) exhibits a strong sensitivity to CCC, and the universal normalized VI (UNVI) is sensitive to CWC. The potential and uncertainty for the application of all the considered VIs are analyzed according to the GSA results. The results can help to improve the use of VIs in different contexts, and the RF-based GSA method can be further applied in more sophisticated situations.


Author(s):  
Sarah C. Baxter ◽  
Philip A. Voglewede

Mathematical modeling is an important part of the engineering design cycle. Most models require application specific input parameters that are established by calculation or experiment. The accuracy of model predictions depends on underlying model assumptions as well as how uncertainty in knowledge of the parameters is transmitted through the mathematical structure of the model. Knowledge about the relative impact of individual parameters can help establish priorities in developing/choosing specific parameters and provide insight into a range of parameters that produce ‘equally good’ designs. In this work Global Sensitivity Analysis (GSA) is examined as a technique that can contribute to this insight by developing Sensitivity Indices, a measure of the relative importance, for each parameter. The approach is illustrated on a kinematic model of a metamorphic 4-bar mechanism. The model parameters are the lengths of the four links. The results of this probabilistic analysis highlight the synergy that must exist between all four link lengths to create a design that can follow the desired motion path. The impact of individual link lengths, however, rises and falls depending on where the mechanism is along its motion path.


2021 ◽  
Author(s):  
Zhouzhou Song ◽  
Zhao Liu ◽  
Can Xu ◽  
Ping Zhu

Abstract In real-world applications, it is commonplace that the computational models have field responses, i.e., the temporal or spatial fields. It has become a critical task to develop global sensitivity analysis (GSA) methods to measure the effect of each input variable on the full-field. In this paper, a new sensitivity analysis method based on the manifold of feature covariance matrix (FCM) is developed for quantifying the impact of input variables on the field response. The method firstly performs feature extraction on the field response to obtain a low-dimensional FCM. An adaptive feature selection method is proposed to avoid the FCM from singularity. Thereby, the field response is represented by a FCM, which lies on a symmetric positive-definite matrix manifold. Then, the GSA technique based on the Cramér-von Mises distance for output valued on the Riemannian manifold is introduced for estimating the sensitivity indices for field response. An example of a temporal field and an example of a 2-D displacement field are introduced to demonstrate the applicability of the proposed method in estimating global sensitivity indices for field solution. Results show that the proposed method can distinguish the important input variables correctly and can yield robust index values. Besides, the proposed method can be implemented for GSA for field responses of different dimensionalities.


2021 ◽  
Vol 7 ◽  
Author(s):  
Nikolaos Tsokanas ◽  
Xujia Zhu ◽  
Giuseppe Abbiati ◽  
Stefano Marelli ◽  
Bruno Sudret ◽  
...  

Hybrid simulation is an experimental method used to investigate the dynamic response of a reference prototype structure by decomposing it to physically-tested and numerically-simulated substructures. The latter substructures interact with each other in a real-time feedback loop and their coupling forms the hybrid model. In this study, we extend our previous work on metamodel-based sensitivity analysis of deterministic hybrid models to the practically more relevant case of stochastic hybrid models. The aim is to cover a more realistic situation where the physical substructure response is not deterministic, as nominally identical specimens are, in practice, never actually identical. A generalized lambda surrogate model recently developed by some of the authors is proposed to surrogate the hybrid model response, and Sobol’ sensitivity indices are computed for substructure quantity of interest response quantiles. Normally, several repetitions of every single sample of the inputs parameters would be required to replicate the response of a stochastic hybrid model. In this regard, a great advantage of the proposed framework is that the generalized lambda surrogate model does not require repeated evaluations of the same sample. The effectiveness of the proposed hybrid simulation global sensitivity analysis framework is demonstrated using an experiment.


2021 ◽  
Author(s):  
Giuseppe Abbiati ◽  
Stefano Marelli ◽  
Nikolaos Tsokanas ◽  
Bruno Sudret ◽  
Bozidar Stojadinovic

Hybrid Simulation is a dynamic response simulation paradigm that merges physical experiments and computational models into a hybrid model. In earthquake engineering, it is used to investigate the response of structures to earthquake excitation. In the context of response to extreme loads, the structure, its boundary conditions, damping, and the ground motion excitation itself are all subjected to large parameter variability. However, in current seismic response testing practice, Hybrid Simulation campaigns rely on a few prototype structures with fixed parameters subjected to one or two ground motions of different intensity. While this approach effectively reveals structural weaknesses, it does not reveal the sensitivity of structure's response. This thus far missing information could support the planning of further experiments as well as drive modeling choices in subsequent analysis and evaluation phases of the structural design process.This paper describes a Global Sensitivity Analysis framework for Hybrid Simulation. This framework, based on Sobol' sensitivity indices, is used to quantify the sensitivity of the response of a structure tested using the Hybrid Simulation approach due to the variability of the prototype structure and the excitation parameters. Polynomial Chaos Expansion is used to surrogate the hybrid model response. Thereafter, Sobol' sensitivity indices are obtained as a by-product of polynomial coefficients, entailing a reduced number of Hybrid Simulations compared to a crude Monte Carlo approach. An experimental verification example highlights the excellent performance of Polynomial Chaos Expansion surrogates in terms of stable estimates of Sobol' sensitivity indices in the presence of noise caused by random experimental errors.


Author(s):  
Souransu Nandi ◽  
Tarunraj Singh

The focus of this paper is on the global sensitivity analysis (GSA) of linear systems with time-invariant model parameter uncertainties and driven by stochastic inputs. The Sobol' indices of the evolving mean and variance estimates of states are used to assess the impact of the time-invariant uncertain model parameters and the statistics of the stochastic input on the uncertainty of the output. Numerical results on two benchmark problems help illustrate that it is conceivable that parameters, which are not so significant in contributing to the uncertainty of the mean, can be extremely significant in contributing to the uncertainty of the variances. The paper uses a polynomial chaos (PC) approach to synthesize a surrogate probabilistic model of the stochastic system after using Lagrange interpolation polynomials (LIPs) as PC bases. The Sobol' indices are then directly evaluated from the PC coefficients. Although this concept is not new, a novel interpretation of stochastic collocation-based PC and intrusive PC is presented where they are shown to represent identical probabilistic models when the system under consideration is linear. This result now permits treating linear models as black boxes to develop intrusive PC surrogates.


2021 ◽  
Author(s):  
Sabine M. Spiessl ◽  
Dirk-A. Becker ◽  
Sergei Kucherenko

<p>Due to their highly nonlinear, non-monotonic or even discontinuous behavior, sensitivity analysis of final repository models can be a demanding task. Most of the output of repository models is typically distributed over several orders of magnitude and highly skewed. Many values of a probabilistic investigation are very low or even zero. Although this is desirable in view of repository safety it can distort the evidence of sensitivity analysis. For the safety assessment of the system, the highest values of outputs are mainly essential and if those are only a few, their dependence on specific parameters may appear insignificant. By applying a transformation, different model output values are differently weighed, according to their magnitude, in sensitivity analysis. Probabilistic methods of higher-order sensitivity analysis, applied on appropriately transformed model output values, provide a possibility for more robust identification of relevant parameters and their interactions. This type of sensitivity analysis is typically done by decomposing the total unconditional variance of the model output into partial variances corresponding to different terms in the ANOVA decomposition. From this, sensitivity indices of increasing order can be computed. The key indices used most often are the first-order index (SI1) and the total-order index (SIT). SI1 refers to the individual impact of one parameter on the model and SIT represents the total effect of one parameter on the output in interactions with all other parameters. The second-order sensitivity indices (SI2) describe the interactions between two model parameters.</p><p>In this work global sensitivity analysis has been performed with three different kinds of output transformations (log, shifted and Box-Cox transformation) and two metamodeling approaches, namely the Random-Sampling High Dimensional Model Representation (RS-HDMR) [1] and the Bayesian Sparse PCE (BSPCE) [2] approaches. Both approaches are implemented in the SobolGSA software [3, 4] which was used in this work. We analyzed the time-dependent output with two approaches for sensitivity analysis, i.e., the pointwise and generalized approaches. With the pointwise approach, the output at each time step is analyzed independently. The generalized approach considers averaged output contributions at all previous time steps in the analysis of the current step. Obtained results indicate that robustness can be improved by using appropriate transformations and choice of coefficients for the transformation and the metamodel.</p><p>[1] M. Zuniga, S. Kucherenko, N. Shah (2013). Metamodelling with independent and dependent inputs. Computer Physics Communications, 184 (6): 1570-1580.</p><p>[2] Q. Shao, A. Younes, M. Fahs, T.A. Mara (2017). Bayesian sparse polynomial chaos expansion for global sensitivity analysis. Computer Methods in Applied Mechanics and Engineering, 318: 474-496.</p><p>[3] S. M. Spiessl, S. Kucherenko, D.-A. Becker, O. Zaccheus (2018). Higher-order sensitivity analysis of a final repository model with discontinuous behaviour. Reliability Engineering and System Safety, doi: https://doi.org/10.1016/j.ress.2018.12.004.</p><p>[4] SobolGSA software (2021). User manual https://www.imperial.ac.uk/process-systems-engineering/research/free-software/sobolgsa-software/.</p>


SPE Journal ◽  
2013 ◽  
Vol 19 (04) ◽  
pp. 621-635 ◽  
Author(s):  
Cheng Dai ◽  
Heng Li ◽  
Dongxiao Zhang

Summary Reservoir simulations involve a large number of formation and fluid parameters, many of which are subject to uncertainties owing to the combination of spatial heterogeneity and insufficient measurements. Accurately quantifying the impact of varying parameters on simulation models can reveal the importance of the parameters, which helps in designing field-characterization strategies and determining parameterization for history matching. Compared with the commonly used local sensitivity analysis (SA), global SA considers the whole variation range of the parameters and can thus provide more-complete information. However, the traditional global sensitivity analysis that is derived from Monte Carlo simulation (MCS) is computationally too demanding for reservoir simulations. In this study, we propose an alternative approach that is both accurate and efficient. In the proposed approach, the model outputs such as pressure and reservoir production quantities are expressed by polynomial chaos expansions (PCEs). The probabilistic collocation method is used to determine the coefficients of the polynomial expansions by solving outputs at different sets of collocation points by means of the original partial-differential equations. Then, a proxy is constructed with such coefficients. Accurate statistical sensitivity indices of the uncertainty parameters can be obtained by running the proxy. We validate the approach with 2D examples by comparing with the MCS-based global SA. It is found that with only a small fraction of the computational cost required by the MCS approach, the new approach gives accurate global sensitivity for each parameter. The proposed approach is also demonstrated on a large-scale 3D black-oil model, for which the MCS-based global SA is found to be computationally infeasible. It is found that the developed approach possesses the following key advantages: It requires a much smaller number of reservoir simulations for accurate global SA; it is nonintrusive and can be implemented with existing codes or simulators; and it can accommodate arbitrary distributions of parameters encountered in realistic geological situations.


Agronomy ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 120 ◽  
Author(s):  
Georg Röll ◽  
William Batchelor ◽  
Ana Castro ◽  
María Simón ◽  
Simone Graeff-Hönninger

Developing disease models to simulate and analyse yield losses for various pathogens is a challenge for the crop modelling community. In this study, we developed and tested a simple method to simulate septoria tritici blotch (STB) in the Cropsim-CERES Wheat model studying the impacts of damage on wheat (Triticum aestivum L.) yield. A model extension was developed by adding a pest damage module to the existing wheat model. The module simulates the impact of daily damage on photosynthesis and leaf area index. The approach was tested on a two-year dataset from Argentina with different wheat cultivars. The accuracy of the simulated yield and leaf area index (LAI) was improved to a great extent. The Root mean squared error (RMSE) values for yield (1144 kg ha−1) and LAI (1.19 m2 m−2) were reduced by half (499 kg ha−1) for yield and LAI (0.69 m2 m−2). In addition, a sensitivity analysis of different disease progress curves on leaf area index and yield was performed using a dataset from Germany. The sensitivity analysis demonstrated the ability of the model to reduce yield accurately in an exponential relationship with increasing infection levels (0–70%). The extended model is suitable for site specific simulations, coupled with for example, available remote sensing data on STB infection.


Sign in / Sign up

Export Citation Format

Share Document