Global Sensitivity Analysis for Field Response Based on the Manifold of Feature Covariance Matrix

2021 ◽  
Author(s):  
Zhouzhou Song ◽  
Zhao Liu ◽  
Can Xu ◽  
Ping Zhu

Abstract In real-world applications, it is commonplace that the computational models have field responses, i.e., the temporal or spatial fields. It has become a critical task to develop global sensitivity analysis (GSA) methods to measure the effect of each input variable on the full-field. In this paper, a new sensitivity analysis method based on the manifold of feature covariance matrix (FCM) is developed for quantifying the impact of input variables on the field response. The method firstly performs feature extraction on the field response to obtain a low-dimensional FCM. An adaptive feature selection method is proposed to avoid the FCM from singularity. Thereby, the field response is represented by a FCM, which lies on a symmetric positive-definite matrix manifold. Then, the GSA technique based on the Cramér-von Mises distance for output valued on the Riemannian manifold is introduced for estimating the sensitivity indices for field response. An example of a temporal field and an example of a 2-D displacement field are introduced to demonstrate the applicability of the proposed method in estimating global sensitivity indices for field solution. Results show that the proposed method can distinguish the important input variables correctly and can yield robust index values. Besides, the proposed method can be implemented for GSA for field responses of different dimensionalities.

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Lei Cheng ◽  
Zhenzhou Lu ◽  
Luyi Li

An extending Borgonovo’s global sensitivity analysis is proposed to measure the influence of fuzzy distribution parameters on fuzzy failure probability by averaging the shift between the membership functions (MFs) of unconditional and conditional failure probability. The presented global sensitivity indices can reasonably reflect the influence of fuzzy-valued distribution parameters on the character of the failure probability, whereas solving the MFs of unconditional and conditional failure probability is time-consuming due to the involved multiple-loop sampling and optimization operators. To overcome the large computational cost, a single-loop simulation (SLS) is introduced to estimate the global sensitivity indices. By establishing a sampling probability density, only a set of samples of input variables are essential to evaluate the MFs of unconditional and conditional failure probability in the presented SLS method. Significance of the global sensitivity indices can be verified and demonstrated through several numerical and engineering examples.


2021 ◽  
Author(s):  
Emilie Rouzies ◽  
Claire Lauvernet ◽  
Bruno Sudret ◽  
Arthur Vidard

Abstract. Pesticide transfers in agricultural catchments are responsible for diffuse but major risks to water quality. Spatialized pesticide transfer models are useful tools to assess the impact of the structure of the landscape on water quality. Before considering using these tools in operational contexts, quantifying their uncertainties is a preliminary necessary step. In this study, we explored how global sensitivity analysis can be applied to the recent PESHMELBA pesticide transfer model to quantify uncertainties on transfer simulations. We set up a virtual catchment based on a real one and we compared different approaches for sensitivity analysis that could handle the specificities of the model: high number of input parameters, limited size of sample due to computational cost and spatialized output. We compared Sobol' indices obtained from Polynomial Chaos Expansion, HSIC dependence measures and feature importance measures obtained from Random Forest surrogate model. Results showed the consistency of the different methods and they highlighted the relevance of Sobol' indices to capture interactions between parameters. Sensitivity indices were first computed for each landscape element (site sensitivity indices). Second, we proposed to aggregate them at the hillslope and the catchment scale in order to get a summary of the model sensitivity and a valuable insight into the model hydrodynamical behaviour. The methodology proposed in this paper may be extended to other modular and distributed hydrological models as there has been a growing interest in these methods in recent years.


Author(s):  
Wei Chen ◽  
Ruichen Jin ◽  
Agus Sudjianto

The importance of sensitivity analysis in engineering design cannot be over-emphasized. In design under uncertainty, sensitivity analysis is performed with respect to the probabilistic characteristics. Global sensitivity analysis (GSA), in particular, is used to study the impact of variations in input variables on the variation of a model output. One of the most challenging issues for GSA is the intensive computational demand for assessing the impact of probabilistic variations. Existing variance-based GSA methods are developed for general functional relationships but require a large number of samples. In this work, we develop an efficient and accurate approach to GSA that employs analytic formulations derived from metamodels of engineering simulation models. We examine the types of GSA needed for design under uncertainty and derive generalized analytical formulations of GSA based on a variety of metamodels commonly used in engineering applications. The benefits of our proposed techniques are demonstrated and verified through both illustrative mathematical examples and the robust design for improving vehicle handling performance.


Mathematics ◽  
2021 ◽  
Vol 9 (19) ◽  
pp. 2425
Author(s):  
Zdeněk Kala

This article presents new sensitivity measures in reliability-oriented global sensitivity analysis. The obtained results show that the contrast and the newly proposed sensitivity measures (entropy and two others) effectively describe the influence of input random variables on the probability of failure Pf. The contrast sensitivity measure builds on Sobol, using the variance of the binary outcome as either a success (0) or a failure (1). In Bernoulli distribution, variance Pf(1 − Pf) and discrete entropy—Pfln(Pf) − (1 − Pf)ln(1 − Pf) are similar to dome functions. By replacing the variance with discrete entropy, a new alternative sensitivity measure is obtained, and then two additional new alternative measures are derived. It is shown that the desired property of all the measures is a dome shape; the rise is not important. Although the decomposition of sensitivity indices with alternative measures is not proven, the case studies suggest a rationale structure of all the indices in the sensitivity analysis of small Pf. The sensitivity ranking of input variables based on the total indices is approximately the same, but the proportions of the first-order and the higher-order indices are very different. Discrete entropy gives significantly higher proportions of first-order sensitivity indices than the other sensitivity measures, presenting entropy as an interesting new sensitivity measure of engineering reliability.


Mathematics ◽  
2021 ◽  
Vol 9 (19) ◽  
pp. 2489
Author(s):  
Zhiwei Bai ◽  
Hongkui Wei ◽  
Yingying Xiao ◽  
Shufang Song ◽  
Sergei Kucherenko

For multidimensional dependent cases with incomplete probability information of random variables, global sensitivity analysis (GSA) theory is not yet mature. The joint probability density function (PDF) of multidimensional variables is usually unknown, meaning that the samples of multivariate variables cannot be easily obtained. Vine copula can decompose the joint PDF of multidimensional variables into the continuous product of marginal PDF and several bivariate copula functions. Based on Vine copula, multidimensional dependent problems can be transformed into two-dimensional dependent problems. A novel Vine copula-based approach for analyzing variance-based sensitivity measures is proposed, which can estimate the main and total sensitivity indices of dependent input variables. Five considered test cases and engineering examples show that the proposed methods are accurate and applicable.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Pavel M. Bokov

We discuss the estimation of the uncertainty and sensitivity parameters for a model response under the assumption that the input variables are normally distributed and block-wise correlated with the covariance matrix, which is small in some norm. These conditions may arise when considering the impact of the group-wise neutron cross-sections' uncertainties on the uncertainty of some reactor parameters such as the neutron multiplication factor. The variance-based global sensitivity analysis, considered in our work, involves the calculation of multidimensional integrals. When the input uncertainties are small, the values of these integrals can be estimated using an asymptotic analysis method called the Laplace approximation. The asymptotic formulas for the output variance and for the global sensitivity indices have been obtained using the Laplace approximation method. It is demonstrated that the asymptotic formula for uncertainty propagation matches the uncertainty propagation formula being used in the local sensitivity analysis. The applicability of the obtained asymptotic approximations was successfully demonstrated on a test problem with realistic cross-section and covariance matrix values.


Author(s):  
Sarah C. Baxter ◽  
Philip A. Voglewede

Mathematical modeling is an important part of the engineering design cycle. Most models require application specific input parameters that are established by calculation or experiment. The accuracy of model predictions depends on underlying model assumptions as well as how uncertainty in knowledge of the parameters is transmitted through the mathematical structure of the model. Knowledge about the relative impact of individual parameters can help establish priorities in developing/choosing specific parameters and provide insight into a range of parameters that produce ‘equally good’ designs. In this work Global Sensitivity Analysis (GSA) is examined as a technique that can contribute to this insight by developing Sensitivity Indices, a measure of the relative importance, for each parameter. The approach is illustrated on a kinematic model of a metamorphic 4-bar mechanism. The model parameters are the lengths of the four links. The results of this probabilistic analysis highlight the synergy that must exist between all four link lengths to create a design that can follow the desired motion path. The impact of individual link lengths, however, rises and falls depending on where the mechanism is along its motion path.


Symmetry ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 90
Author(s):  
Shufang Song ◽  
Lu Wang

Global sensitivity analysis (GSA) is a useful tool to evaluate the influence of input variables in the whole distribution range. Variance-based methods and moment-independent methods are widely studied and popular GSA techniques despite their several shortcomings. Since probability weighted moments (PWMs) include more information than classical moments and can be accurately estimated from small samples, a novel global sensitivity measure based on PWMs is proposed. Then, two methods are introduced to estimate the proposed measure, i.e., double-loop-repeated-set numerical estimation and double-loop-single-set numerical estimation. Several numerical and engineering examples are used to show its advantages.


2021 ◽  
Vol 7 ◽  
Author(s):  
Nikolaos Tsokanas ◽  
Xujia Zhu ◽  
Giuseppe Abbiati ◽  
Stefano Marelli ◽  
Bruno Sudret ◽  
...  

Hybrid simulation is an experimental method used to investigate the dynamic response of a reference prototype structure by decomposing it to physically-tested and numerically-simulated substructures. The latter substructures interact with each other in a real-time feedback loop and their coupling forms the hybrid model. In this study, we extend our previous work on metamodel-based sensitivity analysis of deterministic hybrid models to the practically more relevant case of stochastic hybrid models. The aim is to cover a more realistic situation where the physical substructure response is not deterministic, as nominally identical specimens are, in practice, never actually identical. A generalized lambda surrogate model recently developed by some of the authors is proposed to surrogate the hybrid model response, and Sobol’ sensitivity indices are computed for substructure quantity of interest response quantiles. Normally, several repetitions of every single sample of the inputs parameters would be required to replicate the response of a stochastic hybrid model. In this regard, a great advantage of the proposed framework is that the generalized lambda surrogate model does not require repeated evaluations of the same sample. The effectiveness of the proposed hybrid simulation global sensitivity analysis framework is demonstrated using an experiment.


2021 ◽  
Author(s):  
Giuseppe Abbiati ◽  
Stefano Marelli ◽  
Nikolaos Tsokanas ◽  
Bruno Sudret ◽  
Bozidar Stojadinovic

Hybrid Simulation is a dynamic response simulation paradigm that merges physical experiments and computational models into a hybrid model. In earthquake engineering, it is used to investigate the response of structures to earthquake excitation. In the context of response to extreme loads, the structure, its boundary conditions, damping, and the ground motion excitation itself are all subjected to large parameter variability. However, in current seismic response testing practice, Hybrid Simulation campaigns rely on a few prototype structures with fixed parameters subjected to one or two ground motions of different intensity. While this approach effectively reveals structural weaknesses, it does not reveal the sensitivity of structure's response. This thus far missing information could support the planning of further experiments as well as drive modeling choices in subsequent analysis and evaluation phases of the structural design process.This paper describes a Global Sensitivity Analysis framework for Hybrid Simulation. This framework, based on Sobol' sensitivity indices, is used to quantify the sensitivity of the response of a structure tested using the Hybrid Simulation approach due to the variability of the prototype structure and the excitation parameters. Polynomial Chaos Expansion is used to surrogate the hybrid model response. Thereafter, Sobol' sensitivity indices are obtained as a by-product of polynomial coefficients, entailing a reduced number of Hybrid Simulations compared to a crude Monte Carlo approach. An experimental verification example highlights the excellent performance of Polynomial Chaos Expansion surrogates in terms of stable estimates of Sobol' sensitivity indices in the presence of noise caused by random experimental errors.


Sign in / Sign up

Export Citation Format

Share Document