scholarly journals SAR Imaging Distortions Induced by Topography: A Compact Analytical Formulation for Radiometric Calibration

2021 ◽  
Vol 13 (16) ◽  
pp. 3318
Author(s):  
Pasquale Imperatore

Modeling of synthetic aperture radar (SAR) imaging distortions induced by topography is addressed and a novel radiometric calibration method is proposed in this paper. An analytical formulation of the problem is primarily provided in purely geometrical terms, by adopting the theoretical notions of the differential geometry of surfaces. The novel and conceptually simple formulation relies on a cylindrical coordinate system, whose longitudinal axis corresponds to the sensor flight direction. A 3D representation of the terrain shape is then incorporated into the SAR imaging model by resorting to a suitable parametrization of the observed ground surface. Within this analytical framework, the area-stretching function quantitatively expresses in geometrical terms the inherent local radiometric distortions. This paper establishes its analytical expression in terms of the magnitude of the gradient of the look-angle function uniquely defined in the image domain, thus resulting in being mathematically concise and amenable to a straightforward implementation. The practical relevance of the formulation is also illustrated from a computational perspective, by elucidating its effective discrete implementation. In particular, an inverse cylindrical mapping approach is adopted, thus avoiding the drawback of pixel area fragmentation and integration required in forward-mapping-based approaches. The effectiveness of the proposed SAR radiometric calibration method is experimentally demonstrated by using COSMO-SkyMed SAR data acquired over a mountainous area in Italy.

Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 139
Author(s):  
Shengli Chen ◽  
Xiaobing Zheng ◽  
Xin Li ◽  
Wei Wei ◽  
Shenda Du ◽  
...  

To calibrate the low signal response of the ocean color (OC) bands and test the stability of the Fengyun-3D (FY-3D)/Medium Resolution Spectral Imager II (MERSI-II), an absolute radiometric calibration field test of FY-3D/MERSI-II at the Lake Qinghai Radiometric Calibration Site (RCS) was carried out in August 2018. The lake surface and atmospheric parameters were mainly measured by advanced observation instruments, and the MODerate spectral resolution atmospheric TRANsmittance algorithm and computer model (MODTRAN4.0) was used to simulate the multiple scattering radiance value at the altitude of the sensor. The results showed that the relative deviations between bands 9 and 12 are within 5.0%, while the relative deviations of bands 8, and 13 are 17.1%, and 12.0%, respectively. The precision of the calibration method was verified by calibrating the Aqua/Moderate-resolution Imaging Spectroradiometer (MODIS) and National Polar-orbiting Partnership (NPP)/Visible Infrared Imaging Radiometer (VIIRS), and the deviation of the calibration results was evaluated with the results of the Dunhuang RCS calibration and lunar calibration. The results showed that the relative deviations of NPP/VIIRS were within 7.0%, and the relative deviations of Aqua/MODIS were within 4.1% from 400 nm to 600 nm. The comparisons of three on-orbit calibration methods indicated that band 8 exhibited a large attenuation after launch and the calibration results had good consistency at the other bands except for band 13. The uncertainty value of the whole calibration system was approximately 6.3%, and the uncertainty brought by the field surface measurement reached 5.4%, which might be the main reason for the relatively large deviation of band 13. This study verifies the feasibility of the vicarious calibration method at the Lake Qinghai RCS and provides the basis and reference for the subsequent on-orbit calibration of FY-3D/MERSI-II.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Soni Darmawan ◽  
Ita Carolita ◽  
Rika Hernawati ◽  
Dede Dirgahayu ◽  
Agustan ◽  
...  

Information about oil palm phenology is required for oil palm plantation management, but using spaceborne polarimetric radar imagery remains challenging. However, spaceborne polarimetric radar on X-, C-, and L-band is promising on structure vegetation and cloud area. This study investigates the scattering model of oil palm phenology based on spaceborne X-, C-, and L-band polarimetric Synthetic Aperture Radar (SAR) imaging. The X-, C-, and L-band polarimetric SAR are derived from spaceborne of TerraSAR-X, Sentinel-1A, and ALOS PALSAR 2. Study area is located in oil palm plantations, Asahan District, North Sumatra, Indonesia. The methodology includes data collection, preprocessing, radiometric calibration, speckle filtering, terrain correction, extraction of scattering value, and development of scattering model of oil palm phenology. The results showed different scattering characteristics for the X-, C-, and L-band polarimetric SAR of oil palm for age and found the potential of the scattering model for oil palm phenology based on the X-band on HH polarization that showed a nonlinear model with R 2 = 0.65 . The C-band on VH and VV polarization showed a nonlinear model with R 2 = 0.56 and R 2 = 0.89 . The L-band on HV and HH polarization showed a logarithmic model with R 2 = 0.50 and R 2 = 0.51 . In this case, the most potential of the scattering model of oil palm phenology based on R 2 is using C-band on VV polarization. However, the scattering model based on X-, C-, and L-band is potentially to be used and applied to identify the phenology of oil palm in Indonesia, which is the main parameter in yield estimation. For the future phenology model needs to improve accuracy by integrating multisensors, including different wavelengths on optical and microwave sensors and more in situ data.


2019 ◽  
Vol 39 (2) ◽  
pp. 0212003
Author(s):  
刘加庆 Liu Jiaqing ◽  
韩顺利 Han Shunli ◽  
孟鑫 Meng Xin ◽  
胡德信 Hu Dexin

2017 ◽  
Vol 37 (8) ◽  
pp. 0801003 ◽  
Author(s):  
吕佳彦 Lü Jiayan ◽  
何明元 He Mingyuan ◽  
陈 林 Chen Lin ◽  
胡秀清 Hu Xiuqing ◽  
李 新 Li Xin

Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2841
Author(s):  
Mohammad Ali Zaiter ◽  
Régis Lherbier ◽  
Ghaleb Faour ◽  
Oussama Bazzi ◽  
Jean-Charles Noyer

This paper details a new extrinsic calibration method for scanning laser rangefinder that is precisely focused on the geometrical ground plane-based estimation. This method is also efficient in the challenging experimental configuration of a high angle of inclination of the LiDAR. In this configuration, the calibration of the LiDAR sensor is a key problem that can be be found in various domains and in particular to guarantee the efficiency of ground surface object detection. The proposed extrinsic calibration method can be summarized by the following procedure steps: fitting ground plane, extrinsic parameters estimation (3D orientation angles and altitude), and extrinsic parameters optimization. Finally, the results are presented in terms of precision and robustness against the variation of LiDAR’s orientation and range accuracy, respectively, showing the stability and the accuracy of the proposed extrinsic calibration method, which was validated through numerical simulation and real data to prove the method performance.


2019 ◽  
Vol 9 (7) ◽  
pp. 1424 ◽  
Author(s):  
Mingxin Liu ◽  
Xin Zhang ◽  
Tao Liu ◽  
Guangwei Shi ◽  
Lingjie Wang ◽  
...  

In this paper, a new on-orbit polarization calibration method for the multichannel polarimetric camera is presented. A polarization calibration model for the polarimetric camera is proposed by taking analysis of the polarization radiation transmission process. In order to get the polarization parameters in the calibration model, an on-orbit measurement scheme is reported, which uses a solar diffuser and a built-in rotatable linear analyzer. The advantages of this scheme are sharing the same calibration assembly with the radiometric calibration and acquiring sufficient polarization accuracy. The influence of the diffuser for the measurement is analyzed. By using a verification experiment, the proposed method can achieve on-orbit polarization calibration. The experimental results show that the relative deviation for the measured degree of linear polarization is 0.8% at 670 nm, which provides a foundation for the accurate application of polarimetric imaging detection.


2020 ◽  
Author(s):  
Wei Wang ◽  
JIa Liu ◽  
Chuanzhe Li ◽  
Qingtai Qiu ◽  
Yuchen Liu

<p>The flood events in the mountainous area of northern China has the characteristics of high intensity and strong sudden occurrence, and atmospheric-hydrological coupling system can improve the forecast accuracy and prolong the lead time. This paper discusses the simulations of the enhanced WRF-Hydro model on a historical flood that occurrs in a mesoscale catchment of Taihang mountain on July 21, 2012. Firstly, the precipitation accuracy of WRF, WRF data assimilation, co-kriging merging method of radar QPE data are as three different input sources for WRF-Hydro. The results show that the rainfall of merging QPE can achieve better simulations in time and space. In addition, the rainfall of WRF assimilation data is obviously better than that of WRF, but still underestimates the rainfall values. The extreme event rainstorm mainly <span>proceeds </span>in 5 hours, and for the assimilation data, the spatio-temporal simulations of the rainfall data in the first 2 hours are slightly poor. Hence we compare the combination of the first few hours to use the merging QPE and following by assimilation precipitation as the model input. In addition, according to the parameters of the WRF-Hydro model, a gridding parameter calibration method based on topographic index is constructed.</p>


2020 ◽  
Vol 12 (17) ◽  
pp. 2855
Author(s):  
Changsai Zhang ◽  
Shuai Gao ◽  
Wang Li ◽  
Kaiyi Bi ◽  
Ni Huang ◽  
...  

Terrestrial hyperspectral LiDAR (HSL) sensors could provide not only spatial information of the measured targets but also the backscattered spectral intensity signal of the laser pulse. The raw intensity collected by HSL is influenced by several factors, among which the range, incidence angle and sub-footprint play a significant role. Further studies on the influence of the range, incidence angle and sub-footprint are needed to improve the accuracy of backscatter intensity data as it is important for vegetation structural and biochemical information estimation. In this paper, we investigated the effects on the laser backscatter intensity and developed a practical correction method for HSL data. We established a laser ratio calibration method and a reference target-based method for HSL and investigated the calibration procedures for the mixed measurements of the effects of the incident angle, range and sub-footprint. Results showed that the laser ratio at the red-edge and near-infrared laser wavelengths has higher accuracy and simplicity in eliminating range, incident angle and sub-footprint effects and can significantly improve the backscatter intensity discrepancy caused by these effects.


Inventions ◽  
2020 ◽  
Vol 5 (1) ◽  
pp. 12
Author(s):  
Xiongzhe Han ◽  
J. Alex Thomasson ◽  
Tianyi Wang ◽  
Vaishali Swaminathan

Ground control points (GCPs) are critical for agricultural remote sensing that require georeferencing and calibration of images collected from an unmanned aerial vehicles (UAV) at different times. However, the conventional stationary GCPs are time-consuming and labor-intensive to measure, distribute, and collect their information in a large field setup. An autonomous mobile GCP and a collaboration strategy to communicate with the UAV were developed to improve the efficiency and accuracy of the UAV-based data collection process. Prior to actual field testing, preliminary tests were conducted using the system to show the capability of automatic path tracking by reducing the root mean square error (RMSE) for lateral deviation from 34.3 cm to 15.6 cm based on the proposed look-ahead tracking method. The tests also indicated the feasibility of moving reflectance reference panels successively along all the waypoints without having detrimental effects on pixel values in the mosaicked images, with the percentage errors in digital number values ranging from −1.1% to 0.1%. In the actual field testing, the autonomous mobile GCP was able to successfully cooperate with the UAV in real-time without any interruption, showing superior performances for georeferencing, radiometric calibration, height calibration, and temperature calibration, compared to the conventional calibration method that has stationary GCPs.


Sign in / Sign up

Export Citation Format

Share Document