scholarly journals Sentinel-2 and Landsat-8 Multi-Temporal Series to Estimate Topsoil Properties on Croplands

2021 ◽  
Vol 13 (17) ◽  
pp. 3345
Author(s):  
Fabio Castaldi

The spatial and temporal monitoring of soil organic carbon (SOC), and other soil properties related to soil erosion, is extremely important, both from the environmental and economic perspectives. Sentinel-2 (S2) and Landsat-8 (L8) time series increase the probability to observe bare soil fields in croplands, and thus, monitor soil properties over large regions. In this regard, this work suggests an automated pixel-based approach to select only pure soil pixels in S2 and L8 time series, and to make a synthetic bare soil image (SBSI). The SBSIs and the soil properties measured in the framework of the European LUCAS survey were used to calibrate SOC, clay, and CaCO3 prediction models. The results highlight a high correlation between laboratory soil spectra and the SBSIs median spectra, especially for the SBSI obtained by a three-year S2 collection, which provides satisfactory results in terms of SOC prediction accuracy (RPD: 1.74). The comparison between S2 and L8 results demonstrated the higher capability of the S2 sensor in terms of SOC prediction accuracy, mainly due to the greater spatial resolution of the bands in the visible region. Whereas, neither S2 nor L8 could accurately predict the clay and CaCO3 content. This is because of the low spectral and spatial resolution of their SWIR bands that prevent the exploitation of the narrow spectral features related to these two soil attributes. The results of this study prove that large S2 time series can estimate and monitor SOC in croplands using an automated pixel-based approach that selects pure soil pixels and retrieves reliable synthetic soil spectra.

2020 ◽  
Vol 12 (11) ◽  
pp. 1876 ◽  
Author(s):  
Katsuto Shimizu ◽  
Tetsuji Ota ◽  
Nobuya Mizoue ◽  
Hideki Saito

Developing accurate methods for estimating forest structures is essential for efficient forest management. The high spatial and temporal resolution data acquired by CubeSat satellites have desirable characteristics for mapping large-scale forest structural attributes. However, most studies have used a median composite or single image for analyses. The multi-temporal use of CubeSat data may improve prediction accuracy. This study evaluates the capabilities of PlanetScope CubeSat data to estimate canopy height derived from airborne Light Detection and Ranging (LiDAR) by comparing estimates using Sentinel-2 and Landsat 8 data. Random forest (RF) models using a single composite, multi-seasonal composites, and time-series data were investigated at different spatial resolutions of 3, 10, 20, and 30 m. The highest prediction accuracy was obtained by the PlanetScope multi-seasonal composites at 3 m (relative root mean squared error: 51.3%) and Sentinel-2 multi-seasonal composites at the other spatial resolutions (40.5%, 35.2%, and 34.2% for 10, 20, and 30 m, respectively). The results show that RF models using multi-seasonal composites are 1.4% more accurate than those using harmonic metrics from time-series data in the median. PlanetScope is recommended for canopy height mapping at finer spatial resolutions. However, the unique characteristics of PlanetScope data in a spatial and temporal context should be further investigated for operational forest monitoring.


2020 ◽  
Author(s):  
Daniel Zizala

<p>Previous studies have shown that remote sensing data can be very useful input into soil prediction models. This input usually represents reflectance from bare soils, which, however, make up only a small part of the total area in a given part of the year. For eliminating masking effect of vegetation time series of individual images (Žížala et al. 2019; Shabou et al. 2015; Demattê et al. 2016; Blasch et al. 2015a) or multitemporal composites of spectral data can be used. Exposed Soil Composite Mapping Processor (SCMaP) (Rogge et al. 2018), Geospatial Soil Sensing System (GEOS3) (Demattê et al. 2018), Bare Soil Composite Image (Gallo et al. 2018), and Barest Pixel Composite for Agricultural Areas (Diek et al. 2017), all developed from Landsat time series, multitemporal bare soil image developed from RapidEye time series (Blasch et al. 2015b), or bare soil mosaic (Loiseau et al. 2019) derived from Sentinel-2 data can serve as examples of such composites. However, only some of the composite products have been used yet to predict soil properties. Promising results were achieved; however, the potential of these spectral composites has not yet been tested in a relevant number of studies. Further research is needed for its evaluation.</p><p>Aims of this study are to analyze and to compare the prediction ability of models using different types of multitemporal bare soil composites derived from Sentinel-2 images and their applicability for mapping soil properties in large areas. The study was conducted on a regional scale in the soil heterogeneous region of central Czechia with dissected relief and variable soil properties, where data from 100 soil profiles with soil analytics were available. Sentinel-2 images from 2016-2019 were used for composite formation in the python numpy environment. Different methods of cloud masking, bare soil identification and data aggregation (both already used in previous studies and newly derived) have been tested to compare which is the most suitable for prediction of soil properties. The principles of digital soil mapping and machine learning algorithms (random forest and support vector machine multivariate methods) were used for prediction.</p><p>Results reveal that Sentinel-2 multitemporal bare soil composites can be successfully applied in the prediction of soil properties. The setting of basic parameters of composite creation is very complex and challenging and it requires to use exact algorithms for masking clouds and bare soil. Soil moisture and surface roughness also greatly affect spectral characteristics of bare soil and thus a very important aspect of compositing is finding appropriate statistics to derive final pixel values of reflectance (minimum, mean, median, ...). One possible way to minimize the effect of moisture and surface roughness may be incorporation radar backscatter information from Sentinel-1. However, it further complicates the processing of data and makes the composite creation more complex.</p><p>The research has been supported by the project no. QK1820389 " Production of actual detailed maps of soil properties in the Czech Republic based on database of Large-scale Mapping of Agricultural Soils in Czechoslovakia and application of digital soil mapping" funding by Ministry of Agriculture.</p>


2021 ◽  
Vol 13 (14) ◽  
pp. 2675
Author(s):  
Stefan Mayr ◽  
Igor Klein ◽  
Martin Rutzinger ◽  
Claudia Kuenzer

Fresh water is a vital natural resource. Earth observation time-series are well suited to monitor corresponding surface dynamics. The DLR-DFD Global WaterPack (GWP) provides daily information on globally distributed inland surface water based on MODIS (Moderate Resolution Imaging Spectroradiometer) images at 250 m spatial resolution. Operating on this spatiotemporal level comes with the drawback of moderate spatial resolution; only coarse pixel-based surface water quantification is possible. To enhance the quantitative capabilities of this dataset, we systematically access subpixel information on fractional water coverage. For this, a linear mixture model is employed, using classification probability and pure pixel reference information. Classification probability is derived from relative datapoint (pixel) locations in feature space. Pure water and non-water reference pixels are located by combining spatial and temporal information inherent to the time-series. Subsequently, the model is evaluated for different input sets to determine the optimal configuration for global processing and pixel coverage types. The performance of resulting water fraction estimates is evaluated on the pixel level in 32 regions of interest across the globe, by comparison to higher resolution reference data (Sentinel-2, Landsat 8). Results show that water fraction information is able to improve the product’s performance regarding mixed water/non-water pixels by an average of 11.6% (RMSE). With a Nash-Sutcliffe efficiency of 0.61, the model shows good overall performance. The approach enables the systematic provision of water fraction estimates on a global and daily scale, using only the reflectance and temporal information contained in the input time-series.


2021 ◽  
Vol 13 (21) ◽  
pp. 4465
Author(s):  
Yu Shen ◽  
Xiaoyang Zhang ◽  
Weile Wang ◽  
Ramakrishna Nemani ◽  
Yongchang Ye ◽  
...  

Accurate and timely land surface phenology (LSP) provides essential information for investigating the responses of terrestrial ecosystems to climate changes and quantifying carbon and surface energy cycles on the Earth. LSP has been widely investigated using daily Visible Infrared Imaging Radiometer Suite (VIIRS) or Moderate Resolution Imaging Spectroradiometer (MODIS) observations, but the resultant phenometrics are frequently influenced by surface heterogeneity and persistent cloud contamination in the time series observations. Recently, LSP has been derived from Landsat-8 and Sentinel-2 time series providing detailed spatial pattern, but the results are of high uncertainties because of poor temporal resolution. With the availability of data from Advanced Baseline Imager (ABI) onboard a new generation of geostationary satellites that observe the earth every 10–15 min, daily cloud-free time series could be obtained with high opportunities. Therefore, this study investigates the generation of synthetic high spatiotemporal resolution time series by fusing the harmonized Landsat-8 and Sentinel-2 (HLS) time series with the temporal shape of ABI data for monitoring field-scale (30 m) LSP. The algorithm is verified by detecting the timings of greenup and senescence onsets around north Wisconsin/Michigan states, United States, where cloud cover is frequent during spring rainy season. The LSP detections from HLS-ABI are compared with those from HLS or ABI alone and are further evaluated using PhenoCam observations. The result indicates that (1) ABI could provide ~3 times more high-quality observations than HLS around spring greenup onset; (2) the greenup and senescence onsets derived from ABI and HLS-ABI are spatially consistent and statistically comparable with a median difference less than 1 and 10-days, respectively; (3) greenup and senescence onsets derived from HLS data show sharp boundaries around the orbit-overlapped areas and shifts of ~13 days delay and ~15 days ahead, respectively, relative to HLS-ABI detections; and (4) HLS-ABI greenup and senescence onsets align closely to PhenoCam observations with an absolute average difference of less than 2 days and 5 days, respectively, which are much better than phenology detections from ABI or HLS alone. The result suggests that the proposed approach could be implemented the monitor of 30 m LSP over regions with persistent cloud cover.


2020 ◽  
Vol 12 (21) ◽  
pp. 3478
Author(s):  
Ofer Beeri ◽  
Yishai Netzer ◽  
Sarel Munitz ◽  
Danielle Ferman Mintz ◽  
Ran Pelta ◽  
...  

Daily or weekly irrigation monitoring conducted per sub-field or management zone is an important factor in vine irrigation decision-making. The objective is to determine the crop coefficient (Kc) and the leaf area index (LAI). Since the 1990s, optic satellite imagery has been utilized for this purpose, yet cloud-cover, as well as the desire to increase the temporal resolution, raise the need to integrate more imagery sources. The Sentinel-1 (a C-band synthetic aperture radar—SAR) can solve both issues, but its accuracy for LAI and Kc mapping needs to be determined. The goals of this study were as follows: (1) to test different methods for integrating SAR and optic sensors for increasing temporal resolution and creating seamless time-series of LAI and Kc estimations; and (2) to evaluate the ability of Sentinel-1 to estimate LAI and Kc in comparison to Sentinel-2 and Landsat-8. LAI values were collected at two vineyards, over three (north plot) and four (south plot) growing seasons. These values were converted to Kc, and both parameters were tested against optic and SAR indices. The results present the two Sentinel-1 indices that achieved the best accuracy in estimating the crop parameters and the best method for fusing the optic and the SAR data. Utilizing these achievements, the accuracy of the Kc and LAI estimations from Sentinel-1 were slightly better than the Sentinel-2′s and the Landsat-8′s accuracy. The integration of all three sensors into one seamless time-series not only increases the temporal resolution but also improves the overall accuracy.


2019 ◽  
Vol 11 (11) ◽  
pp. 1266 ◽  
Author(s):  
Mingzheng Zhang ◽  
Dehai Zhu ◽  
Wei Su ◽  
Jianxi Huang ◽  
Xiaodong Zhang ◽  
...  

Continuous monitoring of crop growth status using time-series remote sensing image is essential for crop management and yield prediction. The growing season of summer corn in the North China Plain with the period of rain and hot, which makes the acquisition of cloud-free satellite imagery very difficult. Therefore, we focused on developing image datasets with both a high temporal resolution and medium spatial resolution by harmonizing the time-series of MOD09GA Normalized Difference Vegetation Index (NDVI) images and 30-m-resolution GF-1 WFV images using the improved Kalman filter model. The harmonized images, GF-1 images, and Landsat 8 images were then combined and used to monitor the summer corn growth from 5th June to 6th October, 2014, in three counties of Hebei Province, China, in conjunction with meteorological data and MODIS Evapotranspiration Data Set. The prediction residuals ( Δ P R K ) in NDVI between the GF-1 observations and the harmonized images was in the range of −0.2 to 0.2 with Gauss distribution. Moreover, the obtained phenological curves manifested distinctive growth features for summer corn at field scales. Changes in NDVI over time were more effectively evaluated and represented corn growth trends, when considered in conjunction with meteorological data and MODIS Evapotranspiration Data Set. We observed that the NDVI of summer corn showed a process of first decreasing and then rising in the early growing stage and discuss how the temperature and moisture of the environment changed with the growth stage. The study demonstrated that the synthesized dataset constructed using this methodology was highly accurate, with high temporal resolution and medium spatial resolution and it was possible to harmonize multi-source remote sensing imagery by the improved Kalman filter for long-term field monitoring.


2019 ◽  
Vol 11 (14) ◽  
pp. 1730 ◽  
Author(s):  
Alexandra Runge ◽  
Guido Grosse

The Arctic-Boreal regions experience strong changes of air temperature and precipitation regimes, which affect the thermal state of the permafrost. This results in widespread permafrost-thaw disturbances, some unfolding slowly and over long periods, others occurring rapidly and abruptly. Despite optical remote sensing offering a variety of techniques to assess and monitor landscape changes, a persistent cloud cover decreases the amount of usable images considerably. However, combining data from multiple platforms promises to increase the number of images drastically. We therefore assess the comparability of Landsat-8 and Sentinel-2 imagery and the possibility to use both Landsat and Sentinel-2 images together in time series analyses, achieving a temporally-dense data coverage in Arctic-Boreal regions. We determined overlapping same-day acquisitions of Landsat-8 and Sentinel-2 images for three representative study sites in Eastern Siberia. We then compared the Landsat-8 and Sentinel-2 pixel-pairs, downscaled to 60 m, of corresponding bands and derived the ordinary least squares regression for every band combination. The acquired coefficients were used for spectral bandpass adjustment between the two sensors. The spectral band comparisons showed an overall good fit between Landsat-8 and Sentinel-2 images already. The ordinary least squares regression analyses underline the generally good spectral fit with intercept values between 0.0031 and 0.056 and slope values between 0.531 and 0.877. A spectral comparison after spectral bandpass adjustment of Sentinel-2 values to Landsat-8 shows a nearly perfect alignment between the same-day images. The spectral band adjustment succeeds in adjusting Sentinel-2 spectral values to Landsat-8 very well in Eastern Siberian Arctic-Boreal landscapes. After spectral adjustment, Landsat and Sentinel-2 data can be used to create temporally-dense time series and be applied to assess permafrost landscape changes in Eastern Siberia. Remaining differences between the sensors can be attributed to several factors including heterogeneous terrain, poor cloud and cloud shadow masking, and mixed pixels.


Sign in / Sign up

Export Citation Format

Share Document