scholarly journals Patch-Wise Semantic Segmentation for Hyperspectral Images via a Cubic Capsule Network with EMAP Features

2021 ◽  
Vol 13 (17) ◽  
pp. 3497
Author(s):  
Le Sun ◽  
Xiangbo Song ◽  
Huxiang Guo ◽  
Guangrui Zhao ◽  
Jinwei Wang

In order to overcome the disadvantages of convolution neural network (CNN) in the current hyperspectral image (HSI) classification/segmentation methods, such as the inability to recognize the rotation of spatial objects, the difficulty to capture the fine spatial features and the problem that principal component analysis (PCA) ignores some important information when it retains few components, in this paper, an HSI segmentation model based on extended multi-morphological attribute profile (EMAP) features and cubic capsule network (EMAP–Cubic-Caps) was proposed. EMAP features can effectively extract various attributes profile features of entities in HSI, and the cubic capsule neural network can effectively capture complex spatial features with more details. Firstly, EMAP algorithm is introduced to extract the morphological attribute profile features of the principal components extracted by PCA, and the EMAP feature map is used as the input of the network. Then, the spectral and spatial low-layer information of the HSI is extracted by a cubic convolution network, and the high-layer information of HSI is extracted by the capsule module, which consists of an initial capsule layer and a digital capsule layer. Through the experimental comparison on three well-known HSI datasets, the superiority of the proposed algorithm in semantic segmentation is validated.

Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1734 ◽  
Author(s):  
Tien-Heng Hsieh ◽  
Jean-Fu Kiang

Several versions of convolutional neural network (CNN) were developed to classify hyperspectral images (HSIs) of agricultural lands, including 1D-CNN with pixelwise spectral data, 1D-CNN with selected bands, 1D-CNN with spectral-spatial features and 2D-CNN with principal components. The HSI data of a crop agriculture in Salinas Valley and a mixed vegetation agriculture in Indian Pines were used to compare the performance of these CNN algorithms. The highest overall accuracy on these two cases are 99.8% and 98.1%, respectively, achieved by applying 1D-CNN with augmented input vectors, which contain both spectral and spatial features embedded in the HSI data.


2020 ◽  
Vol 12 (1) ◽  
pp. 125 ◽  
Author(s):  
Mu ◽  
Guo ◽  
Liu

Extracting spatial and spectral features through deep neural networks has become an effective means of classification of hyperspectral images. However, most networks rarely consider the extraction of multi-scale spatial features and cannot fully integrate spatial and spectral features. In order to solve these problems, this paper proposes a multi-scale and multi-level spectral-spatial feature fusion network (MSSN) for hyperspectral image classification. The network uses the original 3D cube as input data and does not need to use feature engineering. In the MSSN, using different scale neighborhood blocks as the input of the network, the spectral-spatial features of different scales can be effectively extracted. The proposed 3D–2D alternating residual block combines the spectral features extracted by the three-dimensional convolutional neural network (3D-CNN) with the spatial features extracted by the two-dimensional convolutional neural network (2D-CNN). It not only achieves the fusion of spectral features and spatial features but also achieves the fusion of high-level features and low-level features. Experimental results on four hyperspectral datasets show that this method is superior to several state-of-the-art classification methods for hyperspectral images.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Shicheng Qiao ◽  
Qinghu Wang ◽  
Jun Zhang ◽  
Zhili Pei

Recently, the automatic detection of decayed blueberries is still a challenge in food industry. Early decay of blueberries happens on surface peel, which may adopt the feasibility of hyperspectral imaging mode to detect decayed region of blueberries. An improved deep residual 3D convolutional neural network (3D-CNN) framework is proposed for hyperspectral images classification so as to realize fast training, classification, and parameter optimization. Rich spectral and spatial features can be rapidly extracted from samples of complete hyperspectral images using our proposed network. This combines the tree structured Parzen estimator (TPE) adaptively and selects the super parameters to optimize the network performance. In addition, aiming at the problem of few samples, this paper proposes a novel strategy to enhance the hyperspectral image sample data, which can improve the training effect. Experimental results on the standard hyperspectral blueberry datasets show that the proposed framework improves the classification accuracy compared with AlexNet and GoogleNet. In addition, our proposed network reduces the number of parameters by half and the training time by about 10%.


2021 ◽  
Vol 11 (12) ◽  
pp. 5703
Author(s):  
Yifan Si ◽  
Dawei Gong ◽  
Yang Guo ◽  
Xinhua Zhu ◽  
Qiangsheng Huang ◽  
...  

DeepLab v3+ neural network shows excellent performance in semantic segmentation. In this paper, we proposed a segmentation framework based on DeepLab v3+ neural network and applied it to the problem of hyperspectral imagery classification (HSIC). The dimensionality reduction of the hyperspectral image is performed using principal component analysis (PCA). DeepLab v3+ is used to extract spatial features, and those are fused with spectral features. A support vector machine (SVM) classifier is used for fitting and classification. Experimental results show that the framework proposed in this paper outperforms most traditional machine learning algorithms and deep-learning algorithms in hyperspectral imagery classification tasks.


2021 ◽  
Author(s):  
ALOU DIAKITE ◽  
GUI JIANGSHENG ◽  
FU XIAPING

<p>Hyperspectral image (HSI) classification using convolutional neural network requires a lot of training samples, which is not always available. Consequently, decreases the classification accuracy due to the overfitting problem. Many studies have been conducted to solve the issue; however, they failed to solve it entirely. Therefore, we proposed a new approach to classify HSI with few training samples using a convolutional neural network in that context. The proposed approach employed an extended morphological profile cube (EMPC) to extract rich spectral-spatial features and then used a 3D densely connected network for classification. Besides, we used sparse principal component analysis to reduce the high spectral dimension of HSI. Experiments results on Indian Pines (IP) and University of Pavia (UP) datasets proved the efficiency of the proposed approach. It increased the OA by 2.61% - 13% and the Kappa coefficient by 2.68% - 15:51% on IP dataset and increased the OA by 0.17% - 11% and the Kappa coefficient by 0.23% - 19% on UP dataset, which is superior to some state-of-art methods.</p>


2021 ◽  
Author(s):  
ALOU DIAKITE ◽  
GUI JIANGSHENG ◽  
FU XIAPING

<p>Hyperspectral image (HSI) classification using convolutional neural network requires a lot of training samples, which is not always available. Consequently, decreases the classification accuracy due to the overfitting problem. Many studies have been conducted to solve the issue; however, they failed to solve it entirely. Therefore, we proposed a new approach to classify HSI with few training samples using a convolutional neural network in that context. The proposed approach employed an extended morphological profile cube (EMPC) to extract rich spectral-spatial features and then used a 3D densely connected network for classification. Besides, we used sparse principal component analysis to reduce the high spectral dimension of HSI. Experiments results on Indian Pines (IP) and University of Pavia (UP) datasets proved the efficiency of the proposed approach. It increased the OA by 2.61% - 13% and the Kappa coefficient by 2.68% - 15:51% on IP dataset and increased the OA by 0.17% - 11% and the Kappa coefficient by 0.23% - 19% on UP dataset, which is superior to some state-of-art methods.</p>


2021 ◽  
Vol 13 (3) ◽  
pp. 335
Author(s):  
Yuhao Qing ◽  
Wenyi Liu

In recent years, image classification on hyperspectral imagery utilizing deep learning algorithms has attained good results. Thus, spurred by that finding and to further improve the deep learning classification accuracy, we propose a multi-scale residual convolutional neural network model fused with an efficient channel attention network (MRA-NET) that is appropriate for hyperspectral image classification. The suggested technique comprises a multi-staged architecture, where initially the spectral information of the hyperspectral image is reduced into a two-dimensional tensor, utilizing a principal component analysis (PCA) scheme. Then, the constructed low-dimensional image is input to our proposed ECA-NET deep network, which exploits the advantages of its core components, i.e., multi-scale residual structure and attention mechanisms. We evaluate the performance of the proposed MRA-NET on three public available hyperspectral datasets and demonstrate that, overall, the classification accuracy of our method is 99.82 %, 99.81%, and 99.37, respectively, which is higher compared to the corresponding accuracy of current networks such as 3D convolutional neural network (CNN), three-dimensional residual convolution structure (RES-3D-CNN), and space–spectrum joint deep network (SSRN).


Author(s):  
A. K. Singh ◽  
H. V. Kumar ◽  
G. R. Kadambi ◽  
J. K. Kishore ◽  
J. Shuttleworth ◽  
...  

In this paper, the quality metrics evaluation on hyperspectral images has been presented using k-means clustering and segmentation. After classification the assessment of similarity between original image and classified image is achieved by measurements of image quality parameters. Experiments were carried out on four different types of hyperspectral images. Aerial and spaceborne hyperspectral images with different spectral and geometric resolutions were considered for quality metrics evaluation. Principal Component Analysis (PCA) has been applied to reduce the dimensionality of hyperspectral data. PCA was ultimately used for reducing the number of effective variables resulting in reduced complexity in processing. In case of ordinary images a human viewer plays an important role in quality evaluation. Hyperspectral data are generally processed by automatic algorithms and hence cannot be viewed directly by human viewers. Therefore evaluating quality of classified image becomes even more significant. An elaborate comparison is made between k-means clustering and segmentation for all the images by taking Peak Signal-to-Noise Ratio (PSNR), Mean Square Error (MSE), Maximum Squared Error, ratio of squared norms called L2RAT and Entropy. First four parameters are calculated by comparing the quality of original hyperspectral image and classified image. Entropy is a measure of uncertainty or randomness which is calculated for classified image. Proposed methodology can be used for assessing the performance of any hyperspectral image classification techniques.


Author(s):  
S. Xu ◽  
M. Ehlers

As the application of hyperspectral images is increasing, many researchers attempt to extend existing pansharpening techniques to hyperspectral images. This paper focuses on the application of Ehlers fusion to hyperspectral image sharpening. Ehlers fusion involves two crucial algorithms: filter technique in the frequency domain and intensity transform. In this study, different filter types and intensity transform methods were analysed separately. With a combination of filter types and intensity transforms, the fusion procedure was implemented to test data sets. The spectral profiles of the pixels of the images were then used as a tool to control the quality of the fused image. Finally, the performance of Ehlers fusion is compared with Principle Component (PC) analysis, Gram-Schmidt transform (Gram-Schmidt), High-Pass Filtering in the spatial domain (HPF), and Wavelet Principal Component (Wavelet-PC) analysis using the same input data. The comparison shows that Ehlers high-pass filter fusion shows outstanding performance both on spatial enhancement and colour preservation.


Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 479 ◽  
Author(s):  
Baokai Zu ◽  
Kewen Xia ◽  
Tiejun Li ◽  
Ziping He ◽  
Yafang Li ◽  
...  

Hyperspectral Images (HSIs) contain enriched information due to the presence of various bands, which have gained attention for the past few decades. However, explosive growth in HSIs’ scale and dimensions causes “Curse of dimensionality” and “Hughes phenomenon”. Dimensionality reduction has become an important means to overcome the “Curse of dimensionality”. In hyperspectral images, labeled samples are more difficult to collect because they require many labor and material resources. Semi-supervised dimensionality reduction is very important in mining high-dimensional data due to the lack of costly-labeled samples. The promotion of the supervised dimensionality reduction method to the semi-supervised method is mostly done by graph, which is a powerful tool for characterizing data relationships and manifold exploration. To take advantage of the spatial information of data, we put forward a novel graph construction method for semi-supervised learning, called SLIC Superpixel-based l 2 , 1 -norm Robust Principal Component Analysis (SURPCA2,1), which integrates superpixel segmentation method Simple Linear Iterative Clustering (SLIC) into Low-rank Decomposition. First, the SLIC algorithm is adopted to obtain the spatial homogeneous regions of HSI. Then, the l 2 , 1 -norm RPCA is exploited in each superpixel area, which captures the global information of homogeneous regions and preserves spectral subspace segmentation of HSIs very well. Therefore, we have explored the spatial and spectral information of hyperspectral image simultaneously by combining superpixel segmentation with RPCA. Finally, a semi-supervised dimensionality reduction framework based on SURPCA2,1 graph is used for feature extraction task. Extensive experiments on multiple HSIs showed that the proposed spectral-spatial SURPCA2,1 is always comparable to other compared graphs with few labeled samples.


Sign in / Sign up

Export Citation Format

Share Document