scholarly journals Using Convolutional Neural Networks for Detection and Morphometric Analysis of Carolina Bays from Publicly Available Digital Elevation Models

2021 ◽  
Vol 13 (18) ◽  
pp. 3770
Author(s):  
Mark A. Lundine ◽  
Arthur C. Trembanis

Carolina Bays are oriented and sandy-rimmed depressions that are ubiquitous throughout the Atlantic Coastal Plain (ACP). Their origin has been a highly debated topic since the 1800s and remains unsolved. Past population estimates of Carolina Bays have varied vastly, ranging between as few as 10,000 to as many as 500,000. With such a large uncertainty around the actual population size, mapping these enigmatic features is a problem that requires an automated detection scheme. Using publicly available LiDAR-derived digital elevation models (DEMs) of the ACP as training images, various types of convolutional neural networks (CNNs) were trained to detect Carolina bays. The detection results were assessed for accuracy and scalability, as well as analyzed for various morphologic, land-use and land cover, and hydrologic characteristics. Overall, the detector found over 23,000 Carolina Bays from southern New Jersey to northern Florida, with highest densities along interfluves. Carolina Bays in Delmarva were found to be smaller and shallower than Bays in the southeastern ACP. At least a third of Carolina Bays have been converted to agricultural lands and almost half of all Carolina Bays are forested. Few Carolina Bays are classified as open water basins, yet almost all of the detected Bays were within 2 km of a water body. In addition, field investigations based upon detection results were performed to describe the sedimentology of Carolina Bays. Sedimentological investigations showed that Bays typically have 1.5 m to 2.5 m thick sand rims that show a gradient in texture, with coarser sand at the bottom and finer sand and silt towards the top. Their basins were found to be 0.5 m to 2 m thick and showed a mix of clayey, silty, and sandy deposits. Last, the results compiled during this study were compared to similar depressional features (i.e., playa-lunette systems) to pinpoint any similarities in origin processes. Altogether, this study shows that CNNs are valuable tools for automated geomorphic feature detection and can lead to new insights when coupled with various forms of remotely sensed and field-based datasets.

2021 ◽  
Vol 10 (8) ◽  
pp. 501
Author(s):  
Ruichen Zhang ◽  
Shaofeng Bian ◽  
Houpu Li

The digital elevation model (DEM) is known as one kind of the most significant fundamental geographical data models. The theory, method and application of DEM are hot research issues in geography, especially in geomorphology, hydrology, soil and other related fields. In this paper, we improve the efficient sub-pixel convolutional neural networks (ESPCN) and propose recursive sub-pixel convolutional neural networks (RSPCN) to generate higher-resolution DEMs (HRDEMs) from low-resolution DEMs (LRDEMs). Firstly, the structure of RSPCN is described in detail based on recursion theory. This paper explores the effects of different training datasets, with the self-adaptive learning rate Adam algorithm optimizing the model. Furthermore, the adding-“zero” boundary method is introduced into the RSPCN algorithm as a data preprocessing method, which improves the RSPCN method’s accuracy and convergence. Extensive experiments are conducted to train the method till optimality. Finally, comparisons are made with other traditional interpolation methods, such as bicubic, nearest-neighbor and bilinear methods. The results show that our method has obvious improvements in both accuracy and robustness and further illustrate the feasibility of deep learning methods in the DEM data processing area.


2021 ◽  
Author(s):  
shrikant pawar ◽  
Aditya Stanam ◽  
Rushikesh Chopade

Bounding box algorithms are useful in localization of image patterns. Recently, utilization of convolutional neural networks on X-ray images has proven a promising disease prediction technique. However, pattern localization over prediction has always been a challenging task with inconsistent coordinates, sizes, resolution and capture positions of an image. Several model architectures like Fast R-CNN, Faster R-CNN, Histogram of Oriented Gradients (HOG), You only look once (YOLO), Region-based Convolutional Neural Networks (R-CNN), Region-based Fully Convolutional Networks (R-FCN), Single Shot Detector (SSD), etc. are used for object detection and localization in modern-day computer vision applications. SSD and region-based detectors like Fast R-CNN or Faster R-CNN are very similar in design and implementation, but SSD have shown to work efficiently with larger frames per second (FPS) and lower resolution images. In this article, we present a unique approach of SSD with a VGG-16 network as a backbone for feature detection of bounding box algorithm to predict the location of an anomaly within chest X-ray image.


2019 ◽  
Author(s):  
A.T. Balci ◽  
C. Gumeli ◽  
A. Hakouz ◽  
D. Yuret ◽  
O. Keskin ◽  
...  

AbstractMotivationProtein–protein interactions are crucial in almost all biological processes. Proteins interact through their interfaces. It is important to determine how proteins interact through interfaces to understand protein binding mechanisms and to predict new protein-protein interactions.ResultsWe present DeepInterface, a deep learning based method which predicts, for a given protein complex, if the interface between the proteins of a complex is a true interface or not. The model is a 3-dimensional convolutional neural networks model and the positive datasets are obtained from all complexes in the Protein Data Bank, the negative datasets are the incorrect solutions of the docking decoys. The model analyzes a given interface structure and outputs the probability of the given structure being an interface. The accuracy of the model for several interface data sets, including PIFACE, PPI4DOCK, DOCKGROUND is approximately 88% in the validation dataset and 75% in the test dataset. The method can be used to improve the accuracy of template based PPI predictions.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Shiyang Yan ◽  
Yizhang Xia ◽  
Jeremy S. Smith ◽  
Wenjin Lu ◽  
Bailing Zhang

Unconstrained hand detection in still images plays an important role in many hand-related vision problems, for example, hand tracking, gesture analysis, human action recognition and human-machine interaction, and sign language recognition. Although hand detection has been extensively studied for decades, it is still a challenging task with many problems to be tackled. The contributing factors for this complexity include heavy occlusion, low resolution, varying illumination conditions, different hand gestures, and the complex interactions between hands and objects or other hands. In this paper, we propose a multiscale deep learning model for unconstrained hand detection in still images. Deep learning models, and deep convolutional neural networks (CNNs) in particular, have achieved state-of-the-art performances in many vision benchmarks. Developed from the region-based CNN (R-CNN) model, we propose a hand detection scheme based on candidate regions generated by a generic region proposal algorithm, followed by multiscale information fusion from the popular VGG16 model. Two benchmark datasets were applied to validate the proposed method, namely, the Oxford Hand Detection Dataset and the VIVA Hand Detection Challenge. We achieved state-of-the-art results on the Oxford Hand Detection Dataset and had satisfactory performance in the VIVA Hand Detection Challenge.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2132
Author(s):  
Tong Li ◽  
Fei Wang ◽  
Changlei Ru ◽  
Yong Jiang ◽  
Jinghong Li

Robot grasping is an important direction in intelligent robots. However, how to help robots grasp specific objects in multi-object scenes is still a challenging problem. In recent years, due to the powerful feature extraction capabilities of convolutional neural networks (CNN), various algorithms based on convolutional neural networks have been proposed to solve the problem of grasp detection. Different from anchor-based grasp detection algorithms, in this paper, we propose a keypoint-based scheme to solve this problem. We model an object or a grasp as a single point—the center point of its bounding box. The detector uses keypoint estimation to find the center point and regress to all other object attributes such as size, direction, etc. Experimental results demonstrate that the accuracy of this method is 74.3% in the multi-object grasp dataset VMRD, and the performance on the single-object scene Cornell dataset is competitive with the current state-of-the-art grasp detection algorithm. Robot experiments demonstrate that this method can help robots grasp the target in single-object and multi-object scenes with overall success rates of 94% and 87%, respectively.


2020 ◽  
Vol 8 (6) ◽  
pp. 4781-4784

Dermatological diseases are found to induce a serious impact on the health of millions of people as everyone is affected by almost all types of skin disorders every year. Since the human analysis of such diseases takes some time and effort, and current methods are only used to analyse singular types of skin diseases, there is a need for a more high-level computer-aided expertise in the analysis and diagnosis of multi-type skin diseases. This paper proposes an approach to use computer-aided techniques in deep learning neural networks such as Convolutional neural networks (CNN) and Residual Neural Networks (ResNet) to predict skin diseases real-time and thus provides more accuracy than other neural networks.


2018 ◽  
Author(s):  
Rollyn Labuguen (P) ◽  
Vishal Gaurav ◽  
Salvador Negrete Blanco ◽  
Jumpei Matsumoto ◽  
Kenichi Inoue ◽  
...  

AbstractUnderstanding animal behavior in its natural habitat is a challenging task. One of the primary step for analyzing animal behavior is feature detection. In this study, we propose the use of deep convolutional neural network (CNN) to locate monkey features from raw RGB images of monkey in its natural environment. We train the model to identify features such as the nose and shoulders of the monkey at about 0.01 model loss.


Sign in / Sign up

Export Citation Format

Share Document