scholarly journals Mapping Canopy Heights in Dense Tropical Forests Using Low-Cost UAV-Derived Photogrammetric Point Clouds and Machine Learning Approaches

2021 ◽  
Vol 13 (18) ◽  
pp. 3777
Author(s):  
He Zhang ◽  
Marijn Bauters ◽  
Pascal Boeckx ◽  
Kristof Van Oost

Tropical forests are a key component of the global carbon cycle and climate change mitigation. Field- or LiDAR-based approaches enable reliable measurements of the structure and above-ground biomass (AGB) of tropical forests. Data derived from digital aerial photogrammetry (DAP) on the unmanned aerial vehicle (UAV) platform offer several advantages over field- and LiDAR-based approaches in terms of scale and efficiency, and DAP has been presented as a viable and economical alternative in boreal or deciduous forests. However, detecting with DAP the ground in dense tropical forests, which is required for the estimation of canopy height, is currently considered highly challenging. To address this issue, we present a generally applicable method that is based on machine learning methods to identify the forest floor in DAP-derived point clouds of dense tropical forests. We capitalize on the DAP-derived high-resolution vertical forest structure to inform ground detection. We conducted UAV-DAP surveys combined with field inventories in the tropical forest of the Congo Basin. Using airborne LiDAR (ALS) for ground truthing, we present a canopy height model (CHM) generation workflow that constitutes the detection, classification and interpolation of ground points using a combination of local minima filters, supervised machine learning algorithms and TIN densification for classifying ground points using spectral and geometrical features from the UAV-based 3D data. We demonstrate that our DAP-based method provides estimates of tree heights that are identical to LiDAR-based approaches (conservatively estimated NSE = 0.88, RMSE = 1.6 m). An external validation shows that our method is capable of providing accurate and precise estimates of tree heights and AGB in dense tropical forests (DAP vs. field inventories of old forest: r2 = 0.913, RMSE = 31.93 Mg ha−1). Overall, this study demonstrates that the application of cheap and easily deployable UAV-DAP platforms can be deployed without expert knowledge to generate biophysical information and advance the study and monitoring of dense tropical forests.

Drones ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 104
Author(s):  
Zaide Duran ◽  
Kubra Ozcan ◽  
Muhammed Enes Atik

With the development of photogrammetry technologies, point clouds have found a wide range of use in academic and commercial areas. This situation has made it essential to extract information from point clouds. In particular, artificial intelligence applications have been used to extract information from point clouds to complex structures. Point cloud classification is also one of the leading areas where these applications are used. In this study, the classification of point clouds obtained by aerial photogrammetry and Light Detection and Ranging (LiDAR) technology belonging to the same region is performed by using machine learning. For this purpose, nine popular machine learning methods have been used. Geometric features obtained from point clouds were used for the feature spaces created for classification. Color information is also added to these in the photogrammetric point cloud. According to the LiDAR point cloud results, the highest overall accuracies were obtained as 0.96 with the Multilayer Perceptron (MLP) method. The lowest overall accuracies were obtained as 0.50 with the AdaBoost method. The method with the highest overall accuracy was achieved with the MLP (0.90) method. The lowest overall accuracy method is the GNB method with 0.25 overall accuracy.


Author(s):  
M. Kada ◽  
D. Kuramin

Abstract. In the practical and professional work of classifying airborne laser scanning (ALS) point clouds, there are nowadays numerous methods and software applications available that are able to separate the points into a few basic categories and do so with a known and consistent quality. Further refinement of the classes then requires either manual or semi-automatic work, or the use of supervised machine learning algorithms. In using supervised machine learning, e.g. Deep Learning neural networks, however, there is a significant chance that they will not maintain the approved quality of an existing classification. In this study, we therefore evaluate the application of two neural networks, PointNet++ and KPConv, and propose to integrate prior knowledge from a pre-existing classification in the form of height above ground and an encoding of the already available labels as additional per-point input features. Our experiments show that such an approach can improve the quality of the 3D classification results by 6% to 10% in mean intersection over union (mIoU) depending on the respective network, but it also cannot completely avoid the aforementioned problems.


Circulation ◽  
2020 ◽  
Vol 141 (Suppl_1) ◽  
Author(s):  
Sridharan Raghavan ◽  
Wenhui Liu ◽  
Anna Baron ◽  
David Saxon ◽  
Meg Plomondon ◽  
...  

Accurate assessment of hypoglycemia risk is critical for treatment selection in individuals with diabetes and cardiovascular disease (CVD) - patients for whom hypoglycemia is particularly harmful. We developed and validated a hypoglycemia prediction model in diabetes patients with and without CVD using data routinely available in electronic health records (EHR) and compared performance to a published prediction model. We studied 128,893 US Veterans with diabetes and angiographic assessment of CVD from 2005 to 2018. We used a random 2/3 of the sample for model development and the remaining 1/3 for validation. The primary outcome was severe hypoglycemia based on a previously validated algorithm that uses diagnosis codes and glucose measurements. We evaluated 33 potential predictors, including demographics, diabetes-related variables, comorbidities, and CVD risk factors. We sequentially used two machine learning algorithms for model development. First, we used multivariable adaptive regression splines, which can accommodate interactions and non-linearities for continuous variables, to select predictors. Second, we used adaptive elastic net, which can accommodate time-to-event outcomes, to fit a model with the selected variables. We tested model discrimination using the area under the ROC curve (AUC) and calibration by plotting predicted versus observed event rates in the independent validation cohort. The best-fitting prediction model included 18 predictors; a history of hypoglycemia was the strongest predictor (Table). In external validation, AUC was 0.729 for 2-year events, and the slope of the calibration curve was 1.05, exceeding performance of the published model in this patient population for both discrimination and calibration (Table). Conclusions: Applying supervised machine learning to EHR data may provide an efficient approach to tailoring prediction of preventable clinical outcomes, e.g., hypoglycemia, for high risk patients receiving care in an integrated healthcare system.


2020 ◽  
Vol 14 (2) ◽  
pp. 140-159
Author(s):  
Anthony-Paul Cooper ◽  
Emmanuel Awuni Kolog ◽  
Erkki Sutinen

This article builds on previous research around the exploration of the content of church-related tweets. It does so by exploring whether the qualitative thematic coding of such tweets can, in part, be automated by the use of machine learning. It compares three supervised machine learning algorithms to understand how useful each algorithm is at a classification task, based on a dataset of human-coded church-related tweets. The study finds that one such algorithm, Naïve-Bayes, performs better than the other algorithms considered, returning Precision, Recall and F-measure values which each exceed an acceptable threshold of 70%. This has far-reaching consequences at a time where the high volume of social media data, in this case, Twitter data, means that the resource-intensity of manual coding approaches can act as a barrier to understanding how the online community interacts with, and talks about, church. The findings presented in this article offer a way forward for scholars of digital theology to better understand the content of online church discourse.


2021 ◽  
Vol 1916 (1) ◽  
pp. 012042
Author(s):  
Ranjani Dhanapal ◽  
A AjanRaj ◽  
S Balavinayagapragathish ◽  
J Balaji

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Wuming Zhang ◽  
Shangshu Cai ◽  
Xinlian Liang ◽  
Jie Shao ◽  
Ronghai Hu ◽  
...  

Abstract Background The universal occurrence of randomly distributed dark holes (i.e., data pits appearing within the tree crown) in LiDAR-derived canopy height models (CHMs) negatively affects the accuracy of extracted forest inventory parameters. Methods We develop an algorithm based on cloth simulation for constructing a pit-free CHM. Results The proposed algorithm effectively fills data pits of various sizes whilst preserving canopy details. Our pit-free CHMs derived from point clouds at different proportions of data pits are remarkably better than those constructed using other algorithms, as evidenced by the lowest average root mean square error (0.4981 m) between the reference CHMs and the constructed pit-free CHMs. Moreover, our pit-free CHMs show the best performance overall in terms of maximum tree height estimation (average bias = 0.9674 m). Conclusion The proposed algorithm can be adopted when working with different quality LiDAR data and shows high potential in forestry applications.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Alan Brnabic ◽  
Lisa M. Hess

Abstract Background Machine learning is a broad term encompassing a number of methods that allow the investigator to learn from the data. These methods may permit large real-world databases to be more rapidly translated to applications to inform patient-provider decision making. Methods This systematic literature review was conducted to identify published observational research of employed machine learning to inform decision making at the patient-provider level. The search strategy was implemented and studies meeting eligibility criteria were evaluated by two independent reviewers. Relevant data related to study design, statistical methods and strengths and limitations were identified; study quality was assessed using a modified version of the Luo checklist. Results A total of 34 publications from January 2014 to September 2020 were identified and evaluated for this review. There were diverse methods, statistical packages and approaches used across identified studies. The most common methods included decision tree and random forest approaches. Most studies applied internal validation but only two conducted external validation. Most studies utilized one algorithm, and only eight studies applied multiple machine learning algorithms to the data. Seven items on the Luo checklist failed to be met by more than 50% of published studies. Conclusions A wide variety of approaches, algorithms, statistical software, and validation strategies were employed in the application of machine learning methods to inform patient-provider decision making. There is a need to ensure that multiple machine learning approaches are used, the model selection strategy is clearly defined, and both internal and external validation are necessary to be sure that decisions for patient care are being made with the highest quality evidence. Future work should routinely employ ensemble methods incorporating multiple machine learning algorithms.


Sign in / Sign up

Export Citation Format

Share Document