scholarly journals Detecting and Analyzing the Displacement of a Small-Magnitude Earthquake Cluster in Rong County, China by the GACOS Based InSAR Technology

2021 ◽  
Vol 13 (20) ◽  
pp. 4137
Author(s):  
Liang Zhao ◽  
Rubing Liang ◽  
Xianlin Shi ◽  
Keren Dai ◽  
Jianhua Cheng ◽  
...  

A series of small-magnitude earthquakes (Mw 2.9~Mw 4.9) occurred in Rong County, Sichuan Province, China between 30 March 2018 and December 2020, which threatened the safety of local residents. Determining the surface displacement and estimating the damage caused by these earthquakes are significant for earthquake relief, post-earthquake disaster assessment and hazard elimination. This paper integrates the Generic Atmospheric Correction Online Service (GACOS) with interferometry synthetic aperture radar (InSAR) to accurately detect the displacement of the series of small-magnitude earthquakes in Rong County based on 45 Sentinel-1 ascending/descending images acquired from January 2018 to December 2020. We analyze the influence of some factors involved in surface displacement, including earthquake magnitude, focal depth and the distance from the epicenter to the fault. The above measurement for small-magnitude earthquakes and statistics analysis for the displacement have not been performed before, so this can help better understand the displacement features of small-magnitude earthquakes, which are important for post-earthquake hazard assessment and disaster prevention.

1981 ◽  
Vol 71 (4) ◽  
pp. 1369-1372
Author(s):  
Jay J. Pulli ◽  
Michael J. Guenette

abstract On 23 November 1980, a small (magnitude 2.9) earthquake occurred on the Chelmsford-Lowell, Massachusetts, border, approximately 10 km northeast of the MIT seismic station at Westford, Massachusetts (WFM). Thus we were able to accurately determine the focal depth, which is generally not the case in New England. Our hypocentral solution was latitude 41.63, longitude −71.36, depth 1.5 km, at origin time 00:39:32.0 UTC. The fault plane solution shows either strike-slip or dip-slip faulting with a P axis trending NE-SW, which is in agreement with overcoring measurements in a nearby granite quarry.


2018 ◽  
Vol 7 (9) ◽  
pp. 375 ◽  
Author(s):  
Han-Saem Kim ◽  
Chang-Guk Sun ◽  
Hyung-Ik Cho

The 2017 Pohang earthquake (moment magnitude scale: 5.4) was South Korea’s second strongest earthquake in decades, and caused the maximum amount of damage in terms of infrastructure and human injuries. As the epicenters were located in regions with Quaternary sediments, which involve distributions of thick fill and alluvial geo-layers, the induced damages were more severe owing to seismic amplification and liquefaction. Thus, to identify the influence of site-specific seismic effects, a post-earthquake survey framework for rapid earthquake damage estimation, correlated with seismic site effects, was proposed and applied in the region of the Pohang earthquake epicenter. Seismic zones were determined on the basis of ground motion by classifying sites using the multivariate site classification system. Low-rise structures with slight and moderate earthquake damage were noted to be concentrated in softer sites owing to the low focal depth of the site, topographical effects, and high frequency range of the mainshocks.


Solid Earth ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 2539-2551
Author(s):  
Luca Smeraglia ◽  
Nathan Looser ◽  
Olivier Fabbri ◽  
Flavien Choulet ◽  
Marcel Guillong ◽  
...  

Abstract. Foreland fold-and-thrust belts (FTBs) record long-lived tectono-sedimentary activity, from passive margin sedimentation, flexuring, and further evolution into wedge accretion ahead of an advancing orogen. Therefore, dating fault activity is fundamental for plate movement reconstruction, resource exploration, and earthquake hazard assessment. Here, we report U–Pb ages of syn-tectonic calcite mineralizations from four thrusts and three tear faults sampled at the regional scale across the Jura fold-and-thrust belt in the northwestern Alpine foreland (eastern France). Three regional tectonic phases are recognized in the middle Eocene–Pliocene interval: (1) pre-orogenic faulting at 48.4±1.5 and 44.7±2.6 Ma associated with the far-field effect of the Alpine or Pyrenean compression, (2) syn-orogenic thrusting at 11.4±1.1, 10.6±0.5, 9.7±1.4, 9.6±0.3, and 7.5±1.1 Ma associated with the formation of the Jura fold-and-thrust belt with possible in-sequence thrust propagation, and (3) syn-orogenic tear faulting at 10.5±0.4, 9.1±6.5, 5.7±4.7, and at 4.8±1.7 Ma including the reactivation of a pre-orogenic fault at 3.9±2.9 Ma. Previously unknown faulting events at 48.4±1.5 and 44.7±2.6 Ma predate the reported late Eocene age for tectonic activity onset in the Alpine foreland by ∼10 Myr. In addition, we date the previously inferred reactivation of pre-orogenic strike-slip faults as tear faults during Jura imbrication. The U–Pb ages document a minimal time frame for the evolution of the Jura FTB wedge by possible in-sequence thrust imbrication above the low-friction basal decollement consisting of evaporites.


2021 ◽  
Author(s):  
Nadaya Cubas ◽  
Philippe Agard ◽  
Roxane Tissandier

<p>Predicting the spatial extent of mega-earthquakes is an essential ingredient of earthquake hazard assessment. In subduction zones, this prediction mostly relies on geodetic observations of interseismic coupling. However, such models face spatial resolution issues and are of little help to predict full or partial ruptures of highly locked patches. Coupling models are interpreted in the framework of the rate-and-state friction laws. However, these models are too idealized to take into account the effects of a geometrically or rheologically complex plate interface. In this study, we show, from the critical taper theory and a mechanical analysis of the topography, that all recent mega-earthquakes of the Chilean subduction zone are surrounded by distributed interplate deformation emanating from either underplating or basal erosion. This long-lived plate interface deformation builds up stresses ultimately leading to earthquake nucleation. Earthquakes then propagate along a relatively smooth surface and are stopped by segments of heterogeneously distributed deformation. Our results are consistent with long-term features of the subduction margin, with observed short-term deformation as well as physical parameters of recovered subducted fragments. They also provide an explanation for the apparent mechanical segmentation of the megathrust, reconciling many seemingly contradictory observations on the short- and long-term deformation. Consequently, we propose that earthquake segmentation relates to the distribution of deformation along the plate interface and that slip deficit patterns reflect the along-dip and along-strike distribution of the plate interface deformation. Topography would therefore mirror plate interface deformation and could serve to improve earthquake rupture prediction.</p>


2005 ◽  
Vol 3 (3) ◽  
pp. 355-381 ◽  
Author(s):  
Y. Zaslavsky ◽  
A. Shapira ◽  
M. Gorstein ◽  
M. Kalmanovich ◽  
V. Giller ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document