scholarly journals Nonlinear Characteristics of NPP Based on Ensemble Empirical Mode Decomposition from 1982 to 2015—A Case Study of Six Coastal Provinces in Southeast China

2021 ◽  
Vol 14 (1) ◽  
pp. 15
Author(s):  
Peng Xue ◽  
Huiyu Liu ◽  
Mingyang Zhang ◽  
Haibo Gong ◽  
Li Cao

Monitoring vegetation net primary productivity (NPP) is very important for evaluating ecosystem health. However, the nonlinear characteristics of the vegetation NPP remain unclear in the six provinces along the Maritime Silk Road in China. In this study, using NDVI and meteorological data from 1982 to 2015, NPP was estimated with the Carnegie-Ames-Stanford Approach (CASA) model based on vegetation type dynamics, and its nonlinear characteristics were explored through the ensemble empirical mode decomposition (EEMD) method. The results showed that: (1) The total NPP in the changed vegetation types caused by ecological engineering and urbanization increased but decreased in those caused by agricultural reclamation and vegetation destruction, (2) the vegetation NPP was dominated by interannual variations, mainly in the middle of the study area, while by long-term trends, mainly in the southwest and northeast, (3) for most of the vegetation types, NPP was dominated by the monotonically increasing trend. Although vegetation NPP in the urban land mainly showed a decreasing trend (monotonic decrease and decrease from increase), there were large areas in which NPP increased from decreasing. Although vegetation NPP in the farmland mainly showed increasing trends, there were large areas that faced the risk of NPP decreasing; (4) dynamical changes of vegetation type by agricultural reclamation and vegetation destruction made the NPP trend monotonically decrease in large areas, leading to ecosystem degradation, while those caused by urbanization and ecological engineering mainly made the NPP increase from decreasing, leading to later recovery from early degradation. Our results highlighted the importance of vegetation type dynamics for accurately estimating vegetation NPP, as well as for assessing their impacts, and the importance of nonlinear analysis for deepening our understanding of vegetation NPP changes.

Author(s):  
Wei Guo

Condition monitoring and fault diagnosis for rolling element bearings is an imperative part for preventive maintenance procedures and reliability improvement of rotating machines. When a localized fault occurs at the early stage of real bearing failures, the impulses generated by the defect are relatively weak and usually overwhelmed by large noise and other higher-level macro-structural vibrations generated by adjacent machine components and machines. To indicate the bearing faulty state as early as possible, it is necessary to develop an effective signal processing method for extracting the weak bearing signal from a vibration signal containing multiple vibration sources. The ensemble empirical mode decomposition (EEMD) method inherits the advantage of the popular empirical mode decomposition (EMD) method and can adaptively decompose a multi-component signal into a number of different bands of simple signal components. However, the energy dispersion and many redundant components make the decomposition result obtained by the EEMD losing the physical significance. In this paper, to enhance the decomposition performance of the EEMD method, the similarity criterion and the corresponding combination technique are proposed to determine the similar signal components and then generate the real mono-component signals. To validate the effectiveness of the proposed method, it is applied to analyze raw vibration signals collected from two faulty bearings, each of which involves more than one vibration sources. The results demonstrate that the proposed method can accurately extract the bearing feature signal; meanwhile, it makes the physical meaning of each IMF clear.


MAUSAM ◽  
2021 ◽  
Vol 67 (2) ◽  
pp. 423-430
Author(s):  
K. BOODHOO ◽  
M. R. LOLLCHUND ◽  
A. F. DILMAHAMOD

In this paper, we propose the use of the Ensemble Empirical Mode Decomposition (EEMD) method in the analysis of trends in climate data. As compared to existing traditional methods, EEMD is simple, fast and reliable. It works by decomposing the time-series data into intrinsic mode functions until a residual component is obtained which represents the trend in the data. The dataset considered consists of satellite precipitation estimates (SPE) obtained from the Tropical Rainfall Measuring Mission (TRMM) for the tropical South-West Indian Ocean (SWIO) basin recorded during the periods January 1998 to December 2013. The SWIO basin spans from the latitudes 5° S to 35° S and the longitudes 30° E to 70° E and comprises of part of the east coast of Africa and some small island developing states (SIDS) such as Comoros, Madagascar, Mauritius and Reunion Island. The EEMD analysis is carried out for summer, winter and yearly time series of the SPE data. The results from the study are presented in terms of intrinsic mode functions (IMFs) and the trends. The analysis reveals that in summer, there is a tendency to have an increase in the amount of rainfall, whereas in winter, from 1998 to 2004 there has been an initial increase of 0.0022 mm/hr/year and from there onwards till 2013 a decrease of 0.00052 mm/hr/year was noted.  


2012 ◽  
Vol 518-523 ◽  
pp. 3887-3890 ◽  
Author(s):  
Wei Chen ◽  
Shang Xu Wang ◽  
Xiao Yu Chuai ◽  
Zhen Zhang

This paper presents a random noise reduction method based on ensemble empirical mode decomposition (EEMD) and wavelet threshold filtering. Firstly, we have conducted spectrum analysis and analyzed the frequency band range of effective signals and noise. Secondly, we make use of EEMD method on seismic signals to obtain intrinsic mode functions (IMFs) of each trace. Then, wavelet threshold noise reduction method is used on the high frequency IMFs of each trace to obtain new high frequency IMFs. Finally, reconstruct the desired signal by adding the new high frequency IMFs on the low frequency IMFs and the trend item together. When applying our method on synthetic seismic record and field data we can get good results.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Peiming Shi ◽  
Cuijiao Su ◽  
Dongying Han

An adaptive stochastic resonance and analytical mode decomposition-ensemble empirical mode decomposition (AMD-EEMD) method is proposed for fault diagnosis of rotating machinery in this paper. Firstly, the stochastic resonance system is optimized by particle swarm optimization (PSO), and the best structure parameters are obtained. Then, the signal with noise is put into the stochastic resonance system and denoising and enhancing the signal. Secondly, the signal output from the stochastic resonance system is extracted by analytical mode decomposition (AMD) method. Finally, the signal is decomposed by ensemble empirical mode decomposition (EEMD) method. The simulation results show that the optimal stochastic resonance system can effectively improve the signal-to-noise ratio, and the number of effective components of EEMD decomposition is significantly reduced after using AMD, thus improving the decomposition results of EEMD and enhancing the amplitude of components frequency. Through the extraction of the rolling bearing fault signal feature proved that the method has a good effect.


2011 ◽  
Vol 128-129 ◽  
pp. 154-159 ◽  
Author(s):  
Lue Chen ◽  
Ge Shi Tang ◽  
Yan Yang Zi ◽  
Fei Fan

Ensemble Empirical Mode Decomposition (EEMD) is a new noise-assisted data analysis (NADA) method. The effect of EEMD depends on two key parameters which are the amplitude of white noise and the ensemble times. However, the shortcoming of EEMD is that it lacks adaptability and reliability because these two key important parameters are obtained by experience and human intervention. An Improved Ensemble Empirical Mode Decomposition method is proposed in this paper, by adding white noise and ascertaining ensemble number adaptively. The criterion of adding white noise in Improved EEMD is established, by which a composite simulation signal could be adaptively and accurately decomposed into IMFs without mode mixing. The proposed method is applied to a gear fault detection of hot strip finishing mills. The result shows that Improved EEMD method successfully extracts the gear fault feature with high precise diagnosis results.


Author(s):  
Wei Li ◽  
Wei Hu ◽  
Kun Hu ◽  
Qiang Qin

The Surface electromyography (sEMG) signal is a kind of electrical signal which generated by human muscles during contraction. It is prone to being affected by noise because of its small amplitude, so it is necessary to remove the noise in its original signal with an appropriate algorithm. Based on the traditional signal denoising indicators, a new complex indicator r has been proposed in this paper which combines three different indicator parameters, that is, Signal to Noise Ratio (SNR), correlation coefficient (R), and standard error (SE). At the same time, an adaptive ensemble empirical mode decomposition (EEMD) method named AIO-EEMD which based on the proposed indicator is represented later. To verify the effective of the proposed algorithm, an electromyography signal acquisition circuit is designed firstly for collecting the original sEMG signal. Then, the denosing performance from the designed method is been compared with empirical mode decomposition (EMD) method and wavelet transform noise reduction method, respectively. The experiment results shown that the designed algorithm can not only automatically get the numbers of the reconstructed signal numbers, but also obtain the best reduction performance.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1666 ◽  
Author(s):  
Neeraj Bokde ◽  
Andrés Feijóo ◽  
Nadhir Al-Ansari ◽  
Siyu Tao ◽  
Zaher Mundher Yaseen

In this research, two hybrid intelligent models are proposed for prediction accuracy enhancement for wind speed and power modeling. The established models are based on the hybridisation of Ensemble Empirical Mode Decomposition (EEMD) with a Pattern Sequence-based Forecasting (PSF) model and the integration of EEMD-PSF with Autoregressive Integrated Moving Average (ARIMA) model. In both models (i.e., EEMD-PSF and EEMD-PSF-ARIMA), the EEMD method is used to decompose the time-series into a set of sub-series and the forecasting of each sub-series is initiated by respective prediction models. In the EEMD-PSF model, all sub-series are predicted using the PSF model, whereas in the EEMD-PSF-ARIMA model, the sub-series with high and low frequencies are predicted using PSF and ARIMA, respectively. The selection of the PSF or ARIMA models for the prediction process is dependent on the time-series characteristics of the decomposed series obtained with the EEMD method. The proposed models are examined for predicting wind speed and wind power time-series at Maharashtra state, India. In case of short-term wind power time-series prediction, both proposed methods have shown at least 18.03 and 14.78 percentage improvement in forecast accuracy in terms of root mean square error (RMSE) as compared to contemporary methods considered in this study for direct and iterated strategies, respectively. Similarly, for wind speed data, those improvement observed to be 20.00 and 23.80 percentages, respectively. These attained prediction results evidenced the potential of the proposed models for the wind speed and wind power forecasting. The current proposed methodology is transformed into R package ‘decomposedPSF’ which is discussed in the Appendix.


2012 ◽  
Vol 04 (04) ◽  
pp. 1250024 ◽  
Author(s):  
KOSEKI J. KOBAYASHI-KIRSCHVINK ◽  
KING-FAI LI ◽  
RUN-LIE SHIA ◽  
YUK L. YUNG

Following an initial growth, the concentrations of chlorofluorocarbon-11 (CFC-11) in the atmosphere started to decline in the 1990's due to world-wide legislative control on emissions. The amplitude of the annual cycle of CFC-11 was much larger in the earlier period compared with that in the later period. We apply here the Ensemble Empirical Mode Decomposition (EEMD) analysis to the CFC-11 data obtained by the U.S. National Oceanic and Atmospheric Administration. The sum of the second and third intrinsic mode functions (IMFs) represents the annual cycle, which shows that the annual cycle of CFC-11 has varied by a factor of 2–3 from the mid-1970's to the present over polar regions. The results provide an illustration of the power of the EEMD method in extracting a variable annual cycle from data dominated by increasing and decreasing trends. Finally, we compare the annual cycle obtained by the EEMD analysis to that obtained using conventional methods such as Fourier transforms and running averages.


2018 ◽  
Vol 2018 ◽  
pp. 1-6
Author(s):  
Feng Xiao ◽  
Gang S. Chen ◽  
Wael Zatar ◽  
J. Leroy Hulsey

This paper investigated dynamical interactions between pile and frozen ground by using the ensemble empirical mode decomposition (EEMD) method. Unlike the conventional empirical mode decomposition (EMD) method, EEMD is found to be able to separate the mode patterns of pile response signals of different scales without causing mode mixing. The identified dynamic properties using the EEMD method are more accurate than those obtained from conventional methods. EEMD-based results can be used to reliably and accurately characterize pile-frozen soil interactions and help designing infrastructure foundations under permafrost condition.


2013 ◽  
Vol 300-301 ◽  
pp. 344-350 ◽  
Author(s):  
Zhou Wan ◽  
Xing Zhi Liao ◽  
Xin Xiong ◽  
Jin Chuan Han

For empirical mode decomposition (EMD) of Hilbert-Huang transform (HHT) exists the problem of mode mixing. An analysis method based on ensemble empirical mode decomposition (EEMD) is proposed to apply to fault diagnosis of rolling bearing. This paper puts forward, after signal pretreatment, applying EEMD method to acquire the intrinsic mode function (IMF) of fault signal. Then according to correlation coefficient for IMFs and the signal before decomposing by EEMD method, some redundant low frequency IMFs produced in the process of decomposition can be eliminated, then the effective IMF components are selected to perform a local Hilbert marginal spectrum analysis, then fault characteristics are extracted. Through the vibration analysis of inner-race fault bearing it shows that this method can be effectively applied to extract fault characteristics of rolling bearing.


Sign in / Sign up

Export Citation Format

Share Document