scholarly journals Subpixel-Scale Topography Retrieval of Mars Using Single-Image DTM Estimation and Super-Resolution Restoration

2022 ◽  
Vol 14 (2) ◽  
pp. 257
Author(s):  
Yu Tao ◽  
Siting Xiong ◽  
Jan-Peter Muller ◽  
Greg Michael ◽  
Susan J. Conway ◽  
...  

We propose using coupled deep learning based super-resolution restoration (SRR) and single-image digital terrain model (DTM) estimation (SDE) methods to produce subpixel-scale topography from single-view ESA Trace Gas Orbiter Colour and Stereo Surface Imaging System (CaSSIS) and NASA Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment (HiRISE) images. We present qualitative and quantitative assessments of the resultant 2 m/pixel CaSSIS SRR DTM mosaic over the ESA and Roscosmos Rosalind Franklin ExoMars rover’s (RFEXM22) planned landing site at Oxia Planum. Quantitative evaluation shows SRR improves the effective resolution of the resultant CaSSIS DTM by a factor of 4 or more, while achieving a fairly good height accuracy measured by root mean squared error (1.876 m) and structural similarity (0.607), compared to the ultra-high-resolution HiRISE SRR DTMs at 12.5 cm/pixel. We make available, along with this paper, the resultant CaSSIS SRR image and SRR DTM mosaics, as well as HiRISE full-strip SRR images and SRR DTMs, to support landing site characterisation and future rover engineering for the RFEXM22.

2021 ◽  
Vol 13 (11) ◽  
pp. 2185
Author(s):  
Yu Tao ◽  
Sylvain Douté ◽  
Jan-Peter Muller ◽  
Susan J. Conway ◽  
Nicolas Thomas ◽  
...  

We introduce a novel ultra-high-resolution Digital Terrain Model (DTM) processing system using a combination of photogrammetric 3D reconstruction, image co-registration, image super-resolution restoration, shape-from-shading DTM refinement, and 3D co-alignment methods. Technical details of the method are described, and results are demonstrated using a 4 m/pixel Trace Gas Orbiter Colour and Stereo Surface Imaging System (CaSSIS) panchromatic image and an overlapping 6 m/pixel Mars Reconnaissance Orbiter Context Camera (CTX) stereo pair to produce a 1 m/pixel CaSSIS Super-Resolution Restoration (SRR) DTM for different areas over Oxia Planum on Mars—the future ESA ExoMars 2022 Rosalind Franklin rover’s landing site. Quantitative assessments are made using profile measurements and the counting of resolvable craters, in comparison with the publicly available 1 m/pixel High-Resolution Imaging Experiment (HiRISE) DTM. These assessments demonstrate that the final resultant 1 m/pixel CaSSIS DTM from the proposed processing system has achieved comparable and sometimes more detailed 3D reconstruction compared to the overlapping HiRISE DTM.


2021 ◽  
Vol 13 (15) ◽  
pp. 2877
Author(s):  
Yu Tao ◽  
Siting Xiong ◽  
Susan J. Conway ◽  
Jan-Peter Muller ◽  
Anthony Guimpier ◽  
...  

The lack of adequate stereo coverage and where available, lengthy processing time, various artefacts, and unsatisfactory quality and complexity of automating the selection of the best set of processing parameters, have long been big barriers for large-area planetary 3D mapping. In this paper, we propose a deep learning-based solution, called MADNet (Multi-scale generative Adversarial u-net with Dense convolutional and up-projection blocks), that avoids or resolves all of the above issues. We demonstrate the wide applicability of this technique with the ExoMars Trace Gas Orbiter Colour and Stereo Surface Imaging System (CaSSIS) 4.6 m/pixel images on Mars. Only a single input image and a coarse global 3D reference are required, without knowing any camera models or imaging parameters, to produce high-quality and high-resolution full-strip Digital Terrain Models (DTMs) in a few seconds. In this paper, we discuss technical details of the MADNet system and provide detailed comparisons and assessments of the results. The resultant MADNet 8 m/pixel CaSSIS DTMs are qualitatively very similar to the 1 m/pixel HiRISE DTMs. The resultant MADNet CaSSIS DTMs display excellent agreement with nested Mars Reconnaissance Orbiter Context Camera (CTX), Mars Express’s High-Resolution Stereo Camera (HRSC), and Mars Orbiter Laser Altimeter (MOLA) DTMs at large-scale, and meanwhile, show fairly good correlation with the High-Resolution Imaging Science Experiment (HiRISE) DTMs for fine-scale details. In addition, we show how MADNet outperforms traditional photogrammetric methods, both on speed and quality, for other datasets like HRSC, CTX, and HiRISE, without any parameter tuning or re-training of the model. We demonstrate the results for Oxia Planum (the landing site of the European Space Agency’s Rosalind Franklin ExoMars rover 2023) and a couple of sites of high scientific interest.


Author(s):  
R. L. Kirk ◽  
R. L. Fergason ◽  
B. Redding ◽  
D. Galuszka ◽  
E. Smith ◽  
...  

Abstract. We have used a high-precision, high-resolution digital terrain model (DTM) of the NASA Mars 2020 rover Perseverance landing site in Jezero crater based on mosaicked images from the Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment (MRO HiRISE) camera as a reference dataset to evaluate DTMs based on Mars Express High Resolution Stereo Camera (MEX HRSC) and MRO Context camera (CTX) images. Results are consistent with our earlier HRSC-HiRISE comparisons at the Mars Science Laboratory (MSL) Curiosity landing site in Gale crater, confirming that those results were not compromised by the small area compared and potential problems with spatial registration. Specifically, height errors are on the order of half a pixel and correspond to an image matching error of 0.2–0.3 pixel but estimates of horizontal resolution are 10–20 pixels. Products from the HRSC team pipeline at DLR are smoother but more precise vertically than those produced by using the commercial stereo package SOCET SET®. The DLR products are also homogenous in quality, whereas the SOCET products are less smoothed and have higher errors in rougher terrain. Despite this weak variation, our results are consistent with a rule of thumb of 0.2–0.3 pixel matching precision based on many prior studies. Horizontal resolution is significantly coarser than the DTM ground sample distance (GSD), which is typically 3–5 pixels.


2021 ◽  
Vol 13 (9) ◽  
pp. 1777
Author(s):  
Yu Tao ◽  
Susan J. Conway ◽  
Jan-Peter Muller ◽  
Alfiah R. D. Putri ◽  
Nicolas Thomas ◽  
...  

The ExoMars Trace Gas Orbiter (TGO)’s Colour and Stereo Surface Imaging System (CaSSIS) provides multi-spectral optical imagery at 4-5m/pixel spatial resolution. Improving the spatial resolution of CaSSIS images would allow greater amounts of scientific information to be extracted. In this work, we propose a novel Multi-scale Adaptive weighted Residual Super-resolution Generative Adversarial Network (MARSGAN) for single-image super-resolution restoration of TGO CaSSIS images, and demonstrate how this provides an effective resolution enhancement factor of about 3 times. We demonstrate with qualitative and quantitative assessments of CaSSIS SRR results over the Mars2020 Perseverance rover’s landing site. We also show examples of similar SRR performance over 8 science test sites mainly selected for being covered by HiRISE at higher resolution for comparison, which include many features unique to the Martian surface. Application of MARSGAN will allow high resolution colour imagery from CaSSIS to be obtained over extensive areas of Mars beyond what has been possible to obtain to date from HiRISE.


Computers ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 41 ◽  
Author(s):  
Vahid Anari ◽  
Farbod Razzazi ◽  
Rasoul Amirfattahi

In the current study, we were inspired by sparse analysis signal representation theory to propose a novel single-image super-resolution method termed “sparse analysis-based super resolution” (SASR). This study presents and demonstrates mapping between low and high resolution images using a coupled sparse analysis operator learning method to reconstruct high resolution (HR) images. We further show that the proposed method selects more informative high and low resolution (LR) learning patches based on image texture complexity to train high and low resolution operators more efficiently. The coupled high and low resolution operators are used for high resolution image reconstruction at a low computational complexity cost. The experimental results for quantitative criteria peak signal to noise ratio (PSNR), root mean square error (RMSE), structural similarity index (SSIM) and elapsed time, human observation as a qualitative measure, and computational complexity verify the improvements offered by the proposed SASR algorithm.


Photonics ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 173
Author(s):  
Ao Yang ◽  
Jie Cao ◽  
Yang Cheng ◽  
Chuanxun Chen ◽  
Qun Hao

Traditional lidar scans the target with a fixed-size scanning spot and scanning trajectory. Therefore, it can only obtain the depth image with the same pixels as the number of scanning points. In order to obtain a high-resolution depth image with a few scanning points, we propose a scanning and depth image reconstruction method with a variable scanning spot and scanning trajectory. Based on the range information and the proportion of the area of each target (PAET) contained in the multi echoes, the region with multi echoes (RME) is selected and a new scanning trajectory and smaller scanning spot are used to obtain a finer depth image. According to the range and PAET obtained by scanning, the RME is segmented and filled to realize the super-resolution reconstruction of the depth image. By using this method, the experiments of two overlapped plates in space are carried out. By scanning the target with only forty-three points, the super-resolution depth image of the target with 160 × 160 pixels is obtained. Compared with the real depth image of the target, the accuracy of area representation (AOAR) and structural similarity (SSIM) of the reconstructed depth image is 99.89% and 98.94%, respectively. The method proposed in this paper can effectively reduce the number of scanning points and improve the scanning efficiency of the three-dimensional laser imaging system.


Author(s):  
Binming Liang ◽  
Xiao Huang ◽  
Jihong Zheng

Abstract Photonic crystal (PC) not only breaks through the diffraction limit of traditional lenses but also can realize super-resolution imaging. Improving the resolution is the key task of PC imaging. The main work of this paper is to use a graded-index Photonic crystal (GPC) flat lens to improve the image resolution. An air-hole type two-dimensional (2D) GPC structure based on silicon medium is proposed in this paper. Numerical simulations through RSoft reveal that when the medium in the imaging area is air, the full width at half maximum (FWHM) value of a single image reaches 0.362λ. According to the Rayleigh criterion, the images of two point sources 0.57λ apart can also be distinguished. In the imaging system composed of cedar oil and GPC flat lens, the FWHM value of a single image reaches 0.34λ. In addition, the images of multiple point sources 0.49λ apart can still be distinguished.


Author(s):  
F. Pineda ◽  
V. Ayma ◽  
C. Beltran

Abstract. High-resolution satellite images have always been in high demand due to the greater detail and precision they offer, as well as the wide scope of the fields in which they could be applied; however, satellites in operation offering very high-resolution (VHR) images has experienced an important increase, but they remain as a smaller proportion against existing lower resolution (HR) satellites. Recent models of convolutional neural networks (CNN) are very suitable for applications with image processing, like resolution enhancement of images; but in order to obtain an acceptable result, it is important, not only to define the kind of CNN architecture but the reference set of images to train the model. Our work proposes an alternative to improve the spatial resolution of HR images obtained by Sentinel-2 satellite by using the VHR images from PeruSat1, a peruvian satellite, which serve as the reference for the super-resolution approach implementation based on a Generative Adversarial Network (GAN) model, as an alternative for obtaining VHR images. The VHR PeruSat-1 image dataset is used for the training process of the network. The results obtained were analyzed considering the Peak Signal to Noise Ratios (PSNR) and the Structural Similarity (SSIM). Finally, some visual outcomes, over a given testing dataset, are presented so the performance of the model could be analyzed as well.


2021 ◽  
Author(s):  
Nicolas Mangold ◽  
Livio Tornabene ◽  
Susan Conway ◽  
Anthony Guimpier ◽  
Axel Noblet ◽  
...  

<p>Antoniadi basin is a 330 km diameter Noachian basin localized in the East of Arabia Terra that contains a network of ridges with a tree-like organization. Branched ridges, such as these can form by a variety of processes including the inversion of fluvial deposits, thus potentially highlighting aqueous processes of interest for understanding Mars’ climate evolution. Here, we test this hypothesis by analyzing in details data from Colour and Stereo Surface Imaging System (CaSSIS), High Resolution Imaging Science Experiment (HiRISE) and High Resolution Stereo Camera (HRSC).</p><p>Branched ridges are up to 10 km long and from 10 to 200 m wide without obvious organization in width. The branched ridges texture is rubbly with the occurrence of blocks up to ~1 m in size and a complete lack of layering. A HiRISE elevation model shows the local slope is of 0.2° toward South, and thus contrary to the apparent network organization (assuming tributary flows). There is no indication of exhumation of these ridges from layers below the current plains surface. Our observations are not consistent with the interpretation of digitate landforms such as inverted channels: (i) The rubbly texture lacking any layering at meter scale is distinct from inverted channels as observed elsewhere on Mars. (ii) Heads of presumed inverted channels display a lobate shape unlike river springs. (iii) There is no increase in width from small branches toward North as expected for channels with increasing discharge rates downstream. (iv) The slope toward South is contrary to the inferred flow direction to the North. The detailed analysis of these branched ridges shows many characteristics difficult to reconcile with inverted channels formed by fluvial channels flowing northward. Subglacial drainages are known to locally flow against topography, but they are rarely dendritic.<strong> </strong>Assuming that deposition occurred along the current slope, thus from North to South, the organization of the network requires a control by distributary channels rather than tributary ones. Distributary channels are possible for fluvial flows, but generally limited to braiding regimes or deltaic deposits, of which no further evidence is observed here. The lobate digitate shapes of the degree 1 branches are actually more in line with deposits of viscous flows, thus as terminal branches. Such an interpretation is consistent with lava or mudflows that formed along the current topography. The next step in this study will be to determine more precisely the rheology of these unusual flows.</p><p><strong>Acknowledgments:</strong> French authors are supported by the CNES. The authors wish to thank the spacecraft and instrument engineering teams. CaSSIS is a project of the University of Bern and funded through the Swiss Space Office via ESA’s PRODEX. The instrument hardware development was also supported by the Italian Space Agency (ASI) (agreement no. I/018/12/0), INAF/Astronomical Observatory of Padova, and the Space Research Center (CBK) in Warsaw. Support from SGF (Budapest), the Univ. of Arizona (Lunar and Planet. Lab.) and NASA are gratefully acknowledged.</p>


Sign in / Sign up

Export Citation Format

Share Document