engineering teams
Recently Published Documents


TOTAL DOCUMENTS

228
(FIVE YEARS 63)

H-INDEX

17
(FIVE YEARS 2)

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Mee H. ◽  
Greasley S. ◽  
Whiting G. ◽  
Harkin C. ◽  
Oliver G. ◽  
...  

Abstract Background Syndrome of the trephined is a well-recognised phenomenon that occurs in patients following a craniectomy. It is associated with several symptoms, including headaches, motor impairments, cognitive disorders and reduced consciousness. Treatment for the syndrome usually involves replacing the skull defect. Case Study A 71-year-old male underwent a left-sided craniectomy after being diagnosed with biopsy-confirmed invasive squamous cell carcinoma with associated skull erosion. Subsequently, he developed a severe case of syndrome of the trephined (SoT,) resulting in having to lie flat to prevent the motor component of the Glasgow Coma Score (GCS) falling from M5/6 (E3/4 Vt M5/6) to M1 (E3/4 Vt M1) on sitting to 30 degrees. Unfortunately, due to ongoing chest sepsis and physical frailty, he was unable to undergo a cranioplasty. Therefore, to aid in clinical stabilisation, the treating physicians and clinical engineering teams designed and manufactured a prosthesis on-site, allowing rapid patient treatment. The prosthesis led to the patient being able to sit up to 30 degrees without the motor component of the GCS falling from M6 to M1 (E4 VT M6). Conclusion Clinical improvements were demonstrated with definitive neurological improvement after applying the external cranial plate in clinical outcome measures and radiographically. Furthermore, we have shown that rapid prototyping technology provides a flexible solution to synthesise bespoke medical prostheses with the correct expertise and regulatory framework.


Queue ◽  
2021 ◽  
Vol 19 (5) ◽  
pp. 20-53
Author(s):  
Kelly Shortridge ◽  
Ryan Petrich

Software engineering teams can exploit attackers' human nature by building deception environments.


2021 ◽  
pp. 1-38
Author(s):  
Joshua Gyory ◽  
Nicolas F Soria Zurita ◽  
Jay Martin ◽  
Corey Balon ◽  
Christopher McComb ◽  
...  

Abstract Managing the design process of teams has been shown to considerably improve problem-solving behaviors and resulting final outcomes. Automating this activity presents significant opportunities in delivering interventions that dynamically adapt to the state of a team in order to reap the most impact. In this work, an Artificial Intelligent (AI) agent is created to manage the design process of engineering teams in real time, tracking features of teams' actions and communications during a complex design and path-planning task with multidisciplinary team members. Teams are also placed under the guidance of human process managers for comparison. Regarding outcomes, teams perform equally as well under both types of management, with trends towards even superior performance from the AI-managed teams. The managers' intervention strategies and team perceptions of those strategies are also explored, illuminating some intriguing similarities. Both the AI and human process managers focus largely on communication-based interventions, though differences start to emerge in the distribution of interventions across team roles. Furthermore, team members perceive the interventions from the both the AI and human manager as equally relevant and helpful, and believe the AI agent to be just as sensitive to the needs of the team. Thus, the overall results show that the AI manager agent introduced in this work is able to match the capabilities of humans, showing potential in automating the management of a complex design process.


2021 ◽  
Author(s):  
Yuri Maksimov ◽  
Mars Khasanov ◽  
Aleksander Blyablyas ◽  
Sergey Vershinin ◽  
Evgeny Ognev ◽  
...  

Abstract Gazprom Neft Science and Technology Center tailors various system engineering methods and other practices to the agenda of oil and gas industry. Resulting consistent approaches will produce a sort of work book enabling management of complex projects throughout the Upstream perimeter. Value-Driven Engineering is a strategic approach to system engineering that optimizes several disciplines within a single model. For example, complex project components are broken down into simpler elements, making it easier to find responsible action officers. Planning is broken down into phases that make it easier to meet the assigned deadlines. It allows you to fragmentize the end product at the design and management phase with a view to edit the product's configuration during the work. Essentially, the VDE approach best resembles a step-by-step guide to putting together a construction made up of multiple elements: without this guide, building the elements into one piece is a much harder job. System engineering is being successfully employed by NASA and aircraft industry today. The approach helps bring together numerous correlated technologies in spacecraft and aircraft building. In the oil industry, BP and Shell are the pioneers in using VDE. Seeking to tailor the system engineering approaches to the applied problems of Gazprom Neft, the Company engineers deliver work in several stages. Stage one is a look back study of projects that covers all the aspects of oil production, from seismic survey to field operation. To build the optimal concept, a project team studies special literature and existing practices in related sectors, essentially among foreign counterparts. The Company has already analyzed the existing research breakthroughs, best practices and digital tools. Even though VDE will chiefly focus on the development of new reservoirs, its individual practices may be successfully utilized at existing assets. Oil and gas production system is growing more complex every day because of the number of control elements and uncertainties that the oil and gas Company has to face at the early stages of planning a future asset. Development of each product, from concept to final implementation, involves a number of lifecycle stages; the sequence of these stages and the necessary toolkit for each stage is identified by the area of expertise known as system engineering. System engineering works perfectly if a certain product or system has existing equivalents, but engineers today may have to handle their tasks in absence of equivalent solutions, which necessitates engagement of creative competences. Development of such competences and inventive problem solving are in the focus of the area of expertise known as creative problem solving that relies on the TRIZ methods (TRIZ = theory of inventive problem solving). Technology intelligence is the area of expertise that focuses on aggregation of experience and employment of solutions from related industries or even from fundamental science. It allows engineering teams to work in an orderly and consistent fashion to find appropriate solutions in nature or in other areas of expertise and to accumulate such solutions in the Company's knowledge cloud. Development of complex systems and products, which include reservoir management, requires multidisciplinary engineering teams. An area of expertise known as team leadership is designed to make collaboration among team members more efficient. Value-Driven Engineering (VDE) is premised on the fundamental principles of systematic thinking of an engineer and human creativity. The conceptual framework of Value-Driven Engineering is shown in Figure 1. Figure 1 Conceptual framework of Value-Driven Engineering The concept involves four key areas of expertise: System engineering, i.e. the set of practices to control the technological system/product development process; Inventive problem solving, i.e. the methods and tools used to catalyze creative competence and problem solving skills; Technology intelligence, i.e. management of comprehensive scouting for human resources and new technologies; Team leadership, i.e. step-by-step guide to transform a group of specialists into a successful team by means of identifying the optimal team size and balance of roles and building a leadership system (goal, mission). This article provides a detailed outlook on the above methods and practices of tackling the challenges faced by the oil and gas industry.


2021 ◽  
Author(s):  
Svein Hovland ◽  
Ricardo Gonzalez ◽  
Ian Knight ◽  
Harshad Patil ◽  
Gregory Matherne

Abstract This paper presents a land rig concept optimized for managed pressure drilling (MPD) service deployment, achieved through close partnership between an MPD technology provider and a drilling contractor. An initial scoping phase identified high-level requirements based on the Operator's planned drilling plans. After the initial concept selection engineering teams continued to optimize MPD rig integration. The engineering teams collaborated closely on optimal placement and configuration for maximum operational efficiency. The system was designed to facilitate fast rig moves and walking within each pad with minimum disruption to other processes. Safety and handling issues were identified in the detailed design stage and allowed optimizing field deployment and operability. The equipment was paired with an MPD control system that was fully integrated in the rigs’ drilling automation platform, enabling consistent, reliable, and repeatable performance. This paper will outline the concept selection process, the design and deployment phase, and further optimization that was implemented after initial learnings.


2021 ◽  
Vol 1 ◽  
pp. 2641-2650
Author(s):  
David Inkermann

AbstractSystems thinking is vital for engineering of nowadays systems characterized by system spanning interactions and an incresing amount of functions. Systems Engineering (SE) represents an interdisciplinary approach, gaining extensive attention to cope with increasing system complexity. Implementation of SE in existing organizations and processes, however, is facing challenges. As a matter of course there is not out of the box concept to be used, in fact definitions and understandings seem to be based on the background and experience of the individual or organization und differ widely. Thus, motivations and expectations of practitioner are manifold and support to adapte and implement SE-methodolgies is needed. Research presented in this contribution picks up the need to provide orientation for individuals, engineering teams and project managers when implementing SE and to address the specific context in that engineering is carried out. Objective is to describe the core idea of SE by a consistent set of principles. This set is used to build up a context specific understanding of SE as a foundation to introduce new methods and procedures in existing method ecosystems.


2021 ◽  
Vol 1 ◽  
pp. 871-880
Author(s):  
Julie Milovanovic ◽  
John Gero ◽  
Kurt Becker

AbstractDesigners faced with complex design problems use decomposition strategies to tackle manageable sub-problems. Recomposition strategies aims at synthesizing sub-solutions into a unique design proposal. Design theory describes the design process as a combination of decomposition and recomposition strategies. In this paper, we explore dynamic patterns of decomposition and recomposition strategies of design teams. Data were collected from 9 teams of professional engineers. Using protocol analysis, we examined the dominance of decomposition and recomposition strategies over time and the correlations between each strategy and design processes such as analysis, synthesis, evaluation. We expected decomposition strategies to peak early in the design process and decay overtime. Instead, teams maintain decomposition and recomposition strategies consistently during the design process. We observed fast iteration of both strategies over a one hour-long design session. The research presented provides an empirical foundation to model the behaviour of professional engineering teams, and first insights to refine theoretical understanding of the use decomposition and recomposition strategies in design practice.


2021 ◽  
Vol 1 ◽  
pp. 221-230
Author(s):  
Helena Hashemi Farzaneh ◽  
Yuri Borgianni ◽  
David Forti ◽  
Erwin Rauch

AbstractThe paper investigates to what extent the knowledge accumulated in the field of Bio-Inspired Design might benefit the process of biologicalisation in manufacturing. According to visions making inroads in the manufacturing field, the latter will not be limited to the consideration and the analysis of biological principles as a source of inspiration for solving technical and organizational problems. In fact, the process of biologicalisation in manufacturing foresees the development of bio-integrated and bio-intelligent systems. In light of these expected developments, Bio-Inspired Design’s might fail to support the whole transition to take place in the manufacturing field. Methodological limitations still to overcome represent an important barrier in this perspective too. While a transfer of knowledge from the design to the manufacturing domain seems unlikely, the authors individuate aspects that encourage cross-fertilization between Bio-Inspired Design and biologicalisation in manufacturing. These include the need to include biologists in engineering teams, the objective of sustainable development, and a shared attention to the evolution of (Design for) Additive Manufacturing.


Sign in / Sign up

Export Citation Format

Share Document