scholarly journals A Case Study of UAS Borne Laser Scanning for Measurement of Tree Stem Diameter

2017 ◽  
Vol 9 (11) ◽  
pp. 1154 ◽  
Author(s):  
Martin Wieser ◽  
Gottfried Mandlburger ◽  
Markus Hollaus ◽  
Johannes Otepka ◽  
Philipp Glira ◽  
...  
2022 ◽  
Vol 268 ◽  
pp. 112769
Author(s):  
Yuanshuo Hao ◽  
Faris Rafi Almay Widagdo ◽  
Xin Liu ◽  
Ying Quan ◽  
Zhaogang Liu ◽  
...  

2020 ◽  
Author(s):  
Moritz Bruggisser ◽  
Johannes Otepka ◽  
Norbert Pfeifer ◽  
Markus Hollaus

<p>Unmanned aerial vehicles-borne laser scanning (ULS) allows time-efficient acquisition of high-resolution point clouds on regional extents at moderate costs. The quality of ULS-point clouds facilitates the 3D modelling of individual tree stems, what opens new possibilities in the context of forest monitoring and management. In our study, we developed and tested an algorithm which allows for i) the autonomous detection of potential stem locations within the point clouds, ii) the estimation of the diameter at breast height (DBH) and iii) the reconstruction of the tree stem. In our experiments on point clouds from both, a RIEGL miniVUX-1DL and a VUX-1UAV, respectively, we could detect 91.0 % and 77.6 % of the stems within our study area automatically. The DBH could be modelled with biases of 3.1 cm and 1.1 cm, respectively, from the two point cloud sets with respective detection rates of 80.6 % and 61.2 % of the trees present in the field inventory. The lowest 12 m of the tree stem could be reconstructed with absolute stem diameter differences below 5 cm and 2 cm, respectively, compared to stem diameters from a point cloud from terrestrial laser scanning. The accuracy of larger tree stems thereby was higher in general than the accuracy for smaller trees. Furthermore, we recognized a small influence only of the completeness with which a stem is covered with points, as long as half of the stem circumference was captured. Likewise, the absolute point count did not impact the accuracy, but, in contrast, was critical to the completeness with which a scene could be reconstructed. The precision of the laser scanner, on the other hand, was a key factor for the accuracy of the stem diameter estimation. <br>The findings of this study are highly relevant for the flight planning and the sensor selection of future ULS acquisition missions in the context of forest inventories.</p>


2019 ◽  
Vol 11 (23) ◽  
pp. 2781 ◽  
Author(s):  
Johan Holmgren ◽  
Michael Tulldahl ◽  
Jonas Nordlöf ◽  
Erik Willén ◽  
Håkan Olsson

Mobile laser scanning (MLS) could make forest inventories more efficient, by using algorithms that automatically derive tree stem center positions and stem diameters. In this work we present a novel method for calibration of the position for laser returns based on tree spines derived from laser data. A first calibration of positions was made for sequential laser scans and further calibrations of laser returns were possible after segmentation, in which laser returns were associated to individual tree stems. The segmentation made it possible to model tree stem spines (i.e., center line of tree stems). Assumptions of coherent tree spine positions were used for correcting laser return positions on the tree stems, thereby improving estimation of stem profiles (i.e., stem diameters at different heights from the ground level). The method was validated on six 20-m radius field plots. Stem diameters were estimated with a Root-Mean-Square-Error (RMSE) of 1 cm for safely linked trees (maximum link distance of 0.5 m) and with a restriction of a minimum amount of data from height intervals for supporting circle estimates. The accuracy was high for plot level estimates of basal area-weighted mean stem diameter (relative RMSE 3.4%) and basal area (relative RMSE 8.5%) because of little influence of small trees (i.e., aggregation of individual trees). The spine calibration made it possible to derive 3D stem profiles also from 3D laser data calculated from sensor positions with large errors because of disturbed below canopy signals from global navigation satellite systems.


Forests ◽  
2016 ◽  
Vol 7 (12) ◽  
pp. 206 ◽  
Author(s):  
Mona Forsman ◽  
Johan Holmgren ◽  
Kenneth Olofsson

Author(s):  
Kristopher D. Staller

Abstract Cold temperature failures are often difficult to resolve, especially those at extreme low levels (< -40°C). Momentary application of chill spray can confirm the failure mode, but is impractical during photoemission microscopy (PEM), laser scanning microscopy (LSM), and multiple point microprobing. This paper will examine relatively low-cost cold temperature systems that can hold samples at steady state extreme low temperatures and describe a case study where a cold temperature stage was combined with LSM soft defect localization (SDL) to rapidly identify the cause of a complex cold temperature failure mechanism.


2015 ◽  
Vol 41 (4) ◽  
pp. 145-155
Author(s):  
Timo Saari ◽  
Markku Poutanen ◽  
Veikko Saaranen ◽  
Harri Kaartinen ◽  
Antero Kukko ◽  
...  

Precise levelling is known for its accuracy and reliability in height determination, but the process itself is slow, laborious and expensive. We have started a project to study methods for height determination that could decrease the creation time of national height systems without losing the accuracy and reliability that is needed for them. In the pilot project described here, we study some of the alternative techniques with a pilot field test where we compared them with the precise levelling. The purpose of the test is not to evaluate the mutual superiority or suitability of the techniques, but to establish the background for a larger test and to find strong and weak points of each technique. The techniques chosen for this study were precise levelling, Mobile Laser Scanning (MLS) and Global Navigation Satellite System (GNSS) levelling, which included static Global Positioning System (GPS) and Virtual Reference Station (VRS) measurements. This research highlighted the differences of the studied techniques and gave insights about the framework and procedure for the later experiments. The research will continue in a larger scale, where the suitability of the techniques regarding the height systems is to be determined.


2018 ◽  
Vol 9 ◽  
Author(s):  
Samuli Junttila ◽  
Junko Sugano ◽  
Mikko Vastaranta ◽  
Riikka Linnakoski ◽  
Harri Kaartinen ◽  
...  

Geosciences ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 272 ◽  
Author(s):  
Łukasz Banaszek ◽  
Dave Cowley ◽  
Mike Middleton

While the National Record of the Historic Environment (NRHE) in Scotland contains valuable information on more than 170,000 archaeological monuments, it is clear that this dataset is conditioned by the disposition of past survey and changing parameters of data collection strategies over many decades. This highlights the importance of creating systematic datasets, in which the standards to which they were created are explicit, and against which the reliability of our knowledge of the material remains of the past can be assessed. This paper describes issues of data structure and reliability, then discussing the methodologies under development for expediting the progress of national-scale mapping with specific reference to the Isle of Arran. Preliminary outcomes of a recent archaeological mapping project of the island, which has been used to develop protocols for rapid large area mapping, are outlined. The primary sources for the survey were airborne laser scanning derivatives and orthophotographs, supplemented by field observation, and the project has more than doubled the number of known monuments of Arran. The survey procedures are described, followed by a discussion of the utility of ‘general purpose’ remote sensed datasets, focusing on the assessment of strengths and weaknesses for rapid mapping of large areas.


Sign in / Sign up

Export Citation Format

Share Document