scholarly journals TLTD: A Testing Framework for Learning-Based IoT Traffic Detection Systems

Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2630 ◽  
Author(s):  
Xiaolei Liu ◽  
Xiaosong Zhang ◽  
Nadra Guizani ◽  
Jiazhong Lu ◽  
Qingxin Zhu ◽  
...  

With the popularization of IoT (Internet of Things) devices and the continuous development of machine learning algorithms, learning-based IoT malicious traffic detection technologies have gradually matured. However, learning-based IoT traffic detection models are usually very vulnerable to adversarial samples. There is a great need for an automated testing framework to help security analysts to detect errors in learning-based IoT traffic detection systems. At present, most methods for generating adversarial samples require training parameters of known models and are only applicable to image data. To address the challenge, we propose a testing framework for learning-based IoT traffic detection systems, TLTD. By introducing genetic algorithms and some technical improvements, TLTD can generate adversarial samples for IoT traffic detection systems and can perform a black-box test on the systems.

2022 ◽  
Author(s):  
Kingsley Austin

Abstract— Credit card fraud is a serious problem for e-commerce retailers with UK merchants reporting losses of $574.2M in 2020. As a result, effective fraud detection systems must be in place to ensure that payments are processed securely in an online environment. From the literature, the detection of credit card fraud is challenging due to dataset imbalance (genuine versus fraudulent transactions), real-time processing requirements, and the dynamic behavior of fraudsters and customers. It is proposed in this paper that the use of machine learning could be an effective solution for combating credit card fraud.According to research, machine learning techniques can play a role in overcoming the identified challenges while ensuring a high detection rate of fraudulent transactions, both directly and indirectly. Even though both supervised and unsupervised machine learning algorithms have been suggested, the flaws in both methods point to the necessity for hybrid approaches.


2021 ◽  
Author(s):  
Phan The Duy ◽  
Nghi Hoang Khoa ◽  
Hoang Hiep ◽  
Nguyen Ba Tuan ◽  
Hien Do Hoang ◽  
...  

Revolutionizing operation model of traditional network in programmability, scalability, and orchestration, Software-Defined Networking (SDN) has considered as a novel network management approach for a massive network with heterogeneous devices. However, it is also highly susceptible to security attacks like conventional network. Inspired from the success of different machine learning algorithms in other domains, many intrusion detection systems (IDS) are presented to identify attacks aiming to harm the network. In this paper, leveraging the flow-based nature of SDN, we introduce DeepFlowIDS, a deep learning (DL)-based approach for anomaly detection using the flow analysis method in SDN. Furthermore, instead of using a lot of network properties, we only utilize essential characteristics of traffic flows to analyze with deep neural networks in IDS. This is to reduce the computational and time cost of attack traffic detection. Besides, we also study the practical benefits of applying deep transfer learning from computer vision to intrusion detection. This method can inherit the knowledge of an effective DL model from other contexts to resolve another task in cybersecurity. Our DL-based IDSs are built and trained with the NSL-KDD and CICIDS2018 dataset in both fine-tuning and feature extractor strategy of transfer learning. Then, it is integrated with the SDN controller to analyze traffic flows retrieved from OpenFlow statistics to recognize the anomaly action in the network.


Information ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 315
Author(s):  
Nathan Martindale ◽  
Muhammad Ismail ◽  
Douglas A. Talbert

As new cyberattacks are launched against systems and networks on a daily basis, the ability for network intrusion detection systems to operate efficiently in the big data era has become critically important, particularly as more low-power Internet-of-Things (IoT) devices enter the market. This has motivated research in applying machine learning algorithms that can operate on streams of data, trained online or “live” on only a small amount of data kept in memory at a time, as opposed to the more classical approaches that are trained solely offline on all of the data at once. In this context, one important concept from machine learning for improving detection performance is the idea of “ensembles”, where a collection of machine learning algorithms are combined to compensate for their individual limitations and produce an overall superior algorithm. Unfortunately, existing research lacks proper performance comparison between homogeneous and heterogeneous online ensembles. Hence, this paper investigates several homogeneous and heterogeneous ensembles, proposes three novel online heterogeneous ensembles for intrusion detection, and compares their performance accuracy, run-time complexity, and response to concept drifts. Out of the proposed novel online ensembles, the heterogeneous ensemble consisting of an adaptive random forest of Hoeffding Trees combined with a Hoeffding Adaptive Tree performed the best, by dealing with concept drift in the most effective way. While this scheme is less accurate than a larger size adaptive random forest, it offered a marginally better run-time, which is beneficial for online training.


Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 974 ◽  
Author(s):  
Xiaolei Liu ◽  
Xiaojiang Du ◽  
Xiaosong Zhang ◽  
Qingxin Zhu ◽  
Hao Wang ◽  
...  

Many IoT (Internet of Things) systems run Android systems or Android-like systems. With the continuous development of machine learning algorithms, the learning-based Android malware detection system for IoT devices has gradually increased. However, these learning-based detection models are often vulnerable to adversarial samples. An automated testing framework is needed to help these learning-based malware detection systems for IoT devices perform security analysis. The current methods of generating adversarial samples mostly require training parameters of models and most of the methods are aimed at image data. To solve this problem, we propose a testing framework for learning-based Android malware detection systems (TLAMD) for IoT Devices. The key challenge is how to construct a suitable fitness function to generate an effective adversarial sample without affecting the features of the application. By introducing genetic algorithms and some technical improvements, our test framework can generate adversarial samples for the IoT Android application with a success rate of nearly 100% and can perform black-box testing on the system.


10.29007/lt5p ◽  
2019 ◽  
Author(s):  
Sophie Siebert ◽  
Frieder Stolzenburg

Commonsense reasoning is an everyday task that is intuitive for humans but hard to implement for computers. It requires large knowledge bases to get the required data from, although this data is still incomplete or even inconsistent. While machine learning algorithms perform rather well on these tasks, the reasoning process remains a black box. To close this gap, our system CoRg aims to build an explainable and well-performing system, which consists of both an explainable deductive derivation process and a machine learning part. We conduct our experiments on the Copa question-answering benchmark using the ontologies WordNet, Adimen-SUMO, and ConceptNet. The knowledge is fed into the theorem prover Hyper and in the end the conducted models will be analyzed using machine learning algorithms, to derive the most probable answer.


2018 ◽  
Author(s):  
Christian Damgaard

AbstractIn order to fit population ecological models, e.g. plant competition models, to new drone-aided image data, we need to develop statistical models that may take the new type of measurement uncertainty when applying machine-learning algorithms into account and quantify its importance for statistical inferences and ecological predictions. Here, it is proposed to quantify the uncertainty and bias of image predicted plant taxonomy and abundance in a hierarchical statistical model that is linked to ground-truth data obtained by the pin-point method. It is critical that the error rate in the species identification process is minimized when the image data are fitted to the population ecological models, and several avenues for reaching this objective are discussed. The outlined method to statistically model known sources of uncertainty when applying machine-learning algorithms may be relevant for other applied scientific disciplines.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254181
Author(s):  
Kamila Lis ◽  
Mateusz Koryciński ◽  
Konrad A. Ciecierski

Data classification is one of the most commonly used applications of machine learning. The are many developed algorithms that can work in various environments and for different data distributions that perform this task with excellence. Classification algorithms, just like other machine learning algorithms have one thing in common: in order to operate on data, they must see the data. In the present world, where concerns about privacy, GDPR (General Data Protection Regulation), business confidentiality and security are growing bigger and bigger; this requirement to work directly on the original data might become, in some situations, a burden. In this paper, an approach to the classification of images that cannot be directly accessed during training has been made. It has been shown that one can train a deep neural network to create such a representation of the original data that i) without additional information, the original data cannot be restored, and ii) that this representation—called a masked form—can still be used for classification purposes. Moreover, it has been shown that classification of the masked data can be done using both classical and neural network-based classifiers.


Sign in / Sign up

Export Citation Format

Share Document