scholarly journals A Smart Congestion Control Mechanism for the Green IoT Sensor-Enabled Information-Centric Networking

Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2889 ◽  
Author(s):  
Rungrot Sukjaimuk ◽  
Quang Nguyen ◽  
Takuro Sato

Information-Centric Networking (ICN) is a new Internet architecture design, which is considered as the global-scale Future Internet (FI) paradigm. Though ICN offers considerable benefits over the existing IP-based Internet architecture, its practical deployment in real life still has many challenges, especially in the case of high congestion and limited power in a sensor enabled-network for the Internet of Things (IoT) era. In this paper, we propose a smart congestion control mechanism to diminish the network congestion rate, reduce sensor power consumptions, and enhance the network performance of ICN at the same time to realize a complete green and efficient ICN-based sensor networking model. The proposed network system uses the chunk-by-chunk aggregated packets according to the content popularity to diminish the number of exchanged packets needed for data transmission. We also design the sensor power-based cache management strategy, and an adaptive Markov-based sensor scheduling policy with selective sensing algorithm to further maximize power savings for the sensors. The evaluation results using ndnSIM (a widely-used ICN simulator) show that the proposed model can provide higher network performance efficiency with lower energy consumption for the future Internet by achieving higher throughput with higher cache hit rate and lower Interest packet drop rate as we increase the number of IoT sensors in ICN.

2016 ◽  
Vol 2016 ◽  
pp. 1-10
Author(s):  
Ruyan Wang ◽  
Yang Tang ◽  
Junjie Yan

Based on the “storing-carrying-forwarding” transmission manner, the packets are forwarded flexibly in Intermittently Connected Wireless Network (ICWN). However, due to its limited resources, ICWN can easily become congested as a large number of packets entering into it. In such situation, the network performance is seriously deteriorated. To solve this problem, we propose a congestion control mechanism that is based on the network state dynamic perception. Specifically, through estimating the congestion risk when a node receives packets, ICWN can reduce the probability of becoming congested. Moreover, due to ICWN’s network dynamics, we determine the congestion risk threshold by jointly taking into account the average packet size, average forwarding risk, and available buffer resources. Further, we also evaluate the service ability of a node in a distributed manner by integrating the recommendation information from other intermediate nodes. Additionally, a node is selected as a relay node according to both the congestion risk and service ability. Simulation results show that the network performance can be greatly optimized by reducing the overhead of packet forwarding.


2011 ◽  
Vol 1 ◽  
pp. 71-75 ◽  
Author(s):  
Ying An ◽  
Xi Luo

Congestion control is a very important problem which can affect network performance directly. However, owing to the lack of steady end-to-end connection and high latency, the traditional congestion control mechanism based on end-to-end feedback is not feasible in DTN. Because obtaining the global information of network is difficult, the congestion control decisions should be made autonomously with local information only. We propose a novel distributed congestion control algorithm based on epidemic routing protocols----MACRE (Message Admission Control based on Rate Estimation). Preliminary experimental results show that this congestion control mechanism can improve the network performance efficiently.


2021 ◽  
Vol 13 (6) ◽  
pp. 149
Author(s):  
Yaqin Song ◽  
Hong Ni ◽  
Xiaoyong Zhu

As an emerging network architecture, Information-Centric Networking (ICN) is considered to have the potential to meet the new requirements of the Fifth Generation (5G) networks. ICN uses a name decoupled from location to identify content, supports the in-network caching technology, and adopts a receiver-driven model for data transmission. Existing ICN congestion control mechanisms usually first select a nearby replica by opportunistic cache-hits and then insist on adjusting the transmission rate regardless of the congestion state, which cannot fully utilize the characteristics of ICN to improve the performance of data transmission. To solve this problem, this paper proposes a two-level congestion control mechanism, called 2LCCM. It switches the replica location based on a node state table to avoid congestion paths when heavy congestion happens. This 2LCCM mechanism also uses a receiver-driven congestion control algorithm to adjust the request sending rate, in order to avoid link congestion under light congestion. In this paper, the design and implementation of the proposed mechanism are described in detail, and the experimental results show that 2LCCM can effectively reduce the transmission delay when heavy congestion occurs, and the bandwidth-delay product-based congestion control algorithm has better transmission performance compared with a loss-based algorithm.


2014 ◽  
Vol 519-520 ◽  
pp. 1239-1242
Author(s):  
Xiao Hu Yu

An improved congestion control mechanism based on mobile agent for wireless sensor networks is proposed, which includes node-level congestion and link-level congestion control. The formers congestion information is collected and distributed by mobile agents (MA). When mobile agent travels through the networks, it can select a less-loaded neighbor node as its next hop and update the routing table according to the nodes congestion status. Minimum package of node outgoing traffic was preferentially transmitted in the link-level congestion. Simulation result shows that proposed mechanism attains high delivery ratio and throughput with reduced delay when compared with the existing technique.


2011 ◽  
Vol 219-220 ◽  
pp. 1656-1659
Author(s):  
Chang Hua Liu ◽  
Cao Yuan

The technologies of Wireless local networks and cellular network are very popular and more and more service under the integrated heterogeneous environment. Stream Control Transmission Protocol (SCTP) is considered as an ideal to support the communication between them by enabling a mobile client to freely switch the IP address in different networks. In this paper, we propose an extended analytical model for SCTP which consider the congestion window and scalable of congestion control mechanism. A great advantage of our model is that establishing a relationship between the throughput and congestion control mechanism. Furthermore, the analytical model provides a useful tool to improve congestion control mechanism of SCTP.


Sign in / Sign up

Export Citation Format

Share Document