scholarly journals Machine Learning Based Localization in Large-Scale Wireless Sensor Networks

Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4179 ◽  
Author(s):  
Ghulam Bhatti

The rapid proliferation of wireless sensor networks over the past few years has posed some serious technical challenges to researchers. The primary function of a multi-hop wireless sensor network (WSN) is to collect and forward sensor data towards the destination node. However, for many applications, the knowledge of the location of sensor nodes is crucial for meaningful interpretation of the sensor data. Localization refers to the process of estimating the location of sensor nodes in a WSN. Self-localization is required in large wireless sensor networks where these nodes cannot be manually positioned. Traditional methods iteratively localize these nodes by using triangulation. However, the inherent instability in wireless signals introduces an error, however minute it might be, in the estimated position of the target node. This results in the embedded error propagating and magnifying rapidly. Machine learning based localizing algorithms for large wireless sensor networks do not function in an iterative manner. In this paper, we investigate the suitability of some of these algorithms while exploring different trade-offs. Specifically, we first formulate a novel way of defining multiple feature vectors for mapping the localizing problem onto different machine learning models. As opposed to treating the localization as a classification problem, as done in the most of the reported work, we treat it as a regression problem. We have studied the impact of varying network parameters, such as network size, anchor population, transmitted signal power, and wireless channel quality, on the localizing accuracy of these models. We have also studied the impact of deploying the anchor nodes in a grid rather than placing these nodes randomly in the deployment area. Our results have revealed interesting insights while using the multivariate regression model and support vector machine (SVM) regression model with radial basis function (RBF) kernel.

Author(s):  
Osman Salem ◽  
Alexey Guerassimov ◽  
Ahmed Mehaoua ◽  
Anthony Marcus ◽  
Borko Furht

This paper details the architecture and describes the preliminary experimentation with the proposed framework for anomaly detection in medical wireless body area networks for ubiquitous patient and healthcare monitoring. The architecture integrates novel data mining and machine learning algorithms with modern sensor fusion techniques. Knowing wireless sensor networks are prone to failures resulting from their limitations (i.e. limited energy resources and computational power), using this framework, the authors can distinguish between irregular variations in the physiological parameters of the monitored patient and faulty sensor data, to ensure reliable operations and real time global monitoring from smart devices. Sensor nodes are used to measure characteristics of the patient and the sensed data is stored on the local processing unit. Authorized users may access this patient data remotely as long as they maintain connectivity with their application enabled smart device. Anomalous or faulty measurement data resulting from damaged sensor nodes or caused by malicious external parties may lead to misdiagnosis or even death for patients. The authors' application uses a Support Vector Machine to classify abnormal instances in the incoming sensor data. If found, the authors apply a periodically rebuilt, regressive prediction model to the abnormal instance and determine if the patient is entering a critical state or if a sensor is reporting faulty readings. Using real patient data in our experiments, the results validate the robustness of our proposed framework. The authors further discuss the experimental analysis with the proposed approach which shows that it is quickly able to identify sensor anomalies and compared with several other algorithms, it maintains a higher true positive and lower false negative rate.


Author(s):  
Amarasimha T. ◽  
V. Srinivasa Rao

Wireless sensor networks are used in machine learning for data communication and classification. Sensor nodes in network suffer from low battery power, so it is necessary to reduce energy consumption. One way of decreasing energy utilization is reducing the information transmitted by an advanced machine learning process called support vector machine. Further, nodes in WSN malfunction upon the occurrence of malicious activities. To overcome these issues, energy conserving and faulty node detection WSN is proposed. SVM optimizes data to be transmitted via one-hop transmission. It sends only the extreme points of data instead of transmitting whole information. This will reduce transmitting energy and accumulate excess energy for future purpose. Moreover, malfunction nodes are identified to overcome difficulties on data processing. Since each node transmits data to nearby nodes, the misbehaving nodes are detected based on transmission speed. The experimental results show that proposed algorithm provides better results in terms of reduced energy consumption and faulty node detection.


2018 ◽  
Vol 14 (11) ◽  
pp. 155014771881130 ◽  
Author(s):  
Jaanus Kaugerand ◽  
Johannes Ehala ◽  
Leo Mõtus ◽  
Jürgo-Sören Preden

This article introduces a time-selective strategy for enhancing temporal consistency of input data for multi-sensor data fusion for in-network data processing in ad hoc wireless sensor networks. Detecting and handling complex time-variable (real-time) situations require methodical consideration of temporal aspects, especially in ad hoc wireless sensor network with distributed asynchronous and autonomous nodes. For example, assigning processing intervals of network nodes, defining validity and simultaneity requirements for data items, determining the size of memory required for buffering the data streams produced by ad hoc nodes and other relevant aspects. The data streams produced periodically and sometimes intermittently by sensor nodes arrive to the fusion nodes with variable delays, which results in sporadic temporal order of inputs. Using data from individual nodes in the order of arrival (i.e. freshest data first) does not, in all cases, yield the optimal results in terms of data temporal consistency and fusion accuracy. We propose time-selective data fusion strategy, which combines temporal alignment, temporal constraints and a method for computing delay of sensor readings, to allow fusion node to select the temporally compatible data from received streams. A real-world experiment (moving vehicles in urban environment) for validation of the strategy demonstrates significant improvement of the accuracy of fusion results.


Author(s):  
Corinna Schmitt ◽  
Georg Carle

Today the researchers want to collect as much data as possible from different locations for monitoring reasons. In this context large-scale wireless sensor networks are becoming an active topic of research (Kahn1999). Because of the different locations and environments in which these sensor networks can be used, specific requirements for the hardware apply. The hardware of the sensor nodes must be robust, provide sufficient storage and communication capabilities, and get along with limited power resources. Sensor nodes such as the Berkeley-Mote Family (Polastre2006, Schmitt2006) are capable of meeting these requirements. These sensor nodes are small and light devices with radio communication and the capability for collecting sensor data. In this chapter the authors review the key elements for sensor networks and give an overview on possible applications in the field of monitoring.


Author(s):  
Habib M. Ammari ◽  
Amer Ahmed

A wireless sensor network is a collection of sensor nodes that have the ability to sense phenomena in a given environment and collect data, perform computation on the gathered data, and transmit (or forward) it to their destination. Unfortunately, these sensor nodes have limited power, computational, and storage capabilities. These factors have an influence on the design of wireless sensor networks and make it more challenging. In order to overcome these limitations, various power management techniques and energy-efficient protocols have been designed. Among such techniques and protocols, geographic routing is one of the most efficient ways to solve some of the design issues. Geographic routing in wireless sensor networks uses location information of the sensor nodes to define a path from source to destination without having to build a network topology. In this paper, we present a survey of the existing geographic routing techniques both in two-dimensional (2D) and three-dimensional (3D) spaces. Furthermore, we will study the advantages of each routing technique and provide a discussion based on their practical possibility of deployment.


Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4712
Author(s):  
Pei Shi ◽  
Guanghui Li ◽  
Yongming Yuan ◽  
Liang Kuang

Wireless sensor networks (WSNs) are susceptible to faults in sensor data. Outlier detection is crucial for ensuring the quality of data analysis in WSNs. This paper proposes a novel improved support vector data description method (ID-SVDD) to effectively detect outliers of sensor data. ID-SVDD utilizes the density distribution of data to compensate SVDD. The Parzen-window algorithm is applied to calculate the relative density for each data point in a data set. Meanwhile, we use Mahalanobis distance (MD) to improve the Gaussian function in Parzen-window density estimation. Through combining new relative density weight with SVDD, this approach can efficiently map the data points from sparse space to high-density space. In order to assess the outlier detection performance, the ID-SVDD algorithm was implemented on several datasets. The experimental results demonstrated that ID-SVDD achieved high performance, and could be applied in real water quality monitoring.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4328 ◽  
Author(s):  
Zhan Huan ◽  
Chang Wei ◽  
Guang-Hui Li

Wireless sensor networks (WSNs) are often deployed in harsh and unattended environments, which may cause the generation of abnormal or low quality data. The inaccurate and unreliable sensor data may increase generation of false alarms and erroneous decisions, so it’s very important to detect outliers in sensor data efficiently and accurately to ensure sound scientific decision-making. In this paper, an outlier detection algorithm (TSVDD) using model selection-based support vector data description (SVDD) is proposed. Firstly, the Toeplitz matrix random feature mapping is used to reduce the time and space complexity of outlier detection. Secondly, a novel model selection strategy is realized to keep the algorithm stable under the low feature dimensions, this strategy can select a relatively optimal decision model and avoid both under-fitting and overfitting phenomena. The simulation results on SensorScope and IBRL datasets demonstrate that, TSVDD achieves higher accuracy and lower time complexity for outlier detection in WSNs compared with existing methods.


Author(s):  
Dina M. Ibrahim ◽  
Nada M. Alruhaily

With the rise of IOT devices and the systems connected to the internet, there was, accordingly, an ever-increasing number of network attacks (e.g. in DOS, DDOS attacks). A very significant research problem related to identifying Wireless Sensor Networks (WSN) attacks and the analysis of the sensor data is the detection of the relevant anomalies. In this paper, we propose a framework for intrusion detection system in WSN. The first two levels are located inside the WSN, one of them is between sensor nodes and the second is between the cluster heads. While the third level located on the cloud, and represented by the base stations. In the first level, which we called light mode, we simulated an intrusion traffic by generating data packets based on TCPDUMP data, which contain intrusion packets, our work, is done by using WSN technology. We used OPNET simulation for generating the traffic because it allows us to collect intrusion detection data in order to measure the network performance and efficiency of the simulated network scenarios. Finally, we report the experimental results by mimicking a Denial-of-Service (DOS) attack. <em> </em>


2016 ◽  
pp. 466-486 ◽  
Author(s):  
Osman Salem ◽  
Alexey Guerassimov ◽  
Ahmed Mehaoua ◽  
Anthony Marcus ◽  
Borko Furht

This paper details the architecture and describes the preliminary experimentation with the proposed framework for anomaly detection in medical wireless body area networks for ubiquitous patient and healthcare monitoring. The architecture integrates novel data mining and machine learning algorithms with modern sensor fusion techniques. Knowing wireless sensor networks are prone to failures resulting from their limitations (i.e. limited energy resources and computational power), using this framework, the authors can distinguish between irregular variations in the physiological parameters of the monitored patient and faulty sensor data, to ensure reliable operations and real time global monitoring from smart devices. Sensor nodes are used to measure characteristics of the patient and the sensed data is stored on the local processing unit. Authorized users may access this patient data remotely as long as they maintain connectivity with their application enabled smart device. Anomalous or faulty measurement data resulting from damaged sensor nodes or caused by malicious external parties may lead to misdiagnosis or even death for patients. The authors' application uses a Support Vector Machine to classify abnormal instances in the incoming sensor data. If found, the authors apply a periodically rebuilt, regressive prediction model to the abnormal instance and determine if the patient is entering a critical state or if a sensor is reporting faulty readings. Using real patient data in our experiments, the results validate the robustness of our proposed framework. The authors further discuss the experimental analysis with the proposed approach which shows that it is quickly able to identify sensor anomalies and compared with several other algorithms, it maintains a higher true positive and lower false negative rate.


Sign in / Sign up

Export Citation Format

Share Document