scholarly journals A Sensitive Near-Infrared Fluorescent Probe for Detecting Heavy Metal Ag+ in Water Samples

Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 247 ◽  
Author(s):  
Yawen Zhang ◽  
Aiying Ye ◽  
Yuewei Yao ◽  
Cheng Yao

Silver is a common catalyst in industrial production, and the frequent use of Ag+ can cause water pollution. Thus, the detection of Ag+ in the environment is necessary to determine the level of pollution from silver. In this work, we designed a new, highly selective near-infrared (NIR) fluorescent probe QCy to detect Ag+. The probe exhibits “turn-off” fluorescence quenching responses at 760 nm towards Ag+ over other relevant cations, with outstanding sensitivity and a low detection limit (0.03 µM), which is considerably lower than the standard of the World Health Organization (WHO) for drinking water (0.9 µM). Meanwhile, QCy showed a very good linearity at a low concentration of Ag+ with a ‘naked eye’ visible color change of solution from blue to red. The probe has been applied successfully for the detection of Ag+ in real water samples.

2020 ◽  
pp. 174751982097392
Author(s):  
Qihua You ◽  
Yihua Zhuo ◽  
Yadong Feng ◽  
Yujuan Xiao ◽  
Yanyu Zhang ◽  
...  

A highly selective OFF–ON fluorescent probe is developed for the sensing of Cu2+ based on the hydrolysis of a quinoline-2-carboxylate moiety. The probe is weakly fluorescent due to esterification of the phenolic group. Upon treatment with 1 equiv. of Cu2+, the probe exhibits strong fluorescence at 570 nm. The probe also exhibits high selectivity for Cu2+ over other cations with a low detection limit of 0.2 μM, which is sensitive enough to meet the standard of the World Health Organization for Cu2+ in drinking water (30 μM). Moreover, the probe shows a very low cell cytotoxicity, and imaging experiments demonstrate that the probe can be used for the sensing of Cu2+ in living cells.


The Analyst ◽  
2018 ◽  
Vol 143 (18) ◽  
pp. 4354-4358 ◽  
Author(s):  
Hai Xu ◽  
Zhen Huang ◽  
Yaqian Li ◽  
Biao Gu ◽  
Zile Zhou ◽  
...  

The ‘C–CN’ bond cleavage was applied to the recognition of N2H4 for the first time; the obvious change in color could be used for “naked-eye” detection; the corresponding detection limit was found to be 5.81 × 10−8 M (1.65 ppb); the probe could be applied for N2H4 detection in real water samples.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5591
Author(s):  
Donghwan Choe ◽  
Haeri So ◽  
Soyoung Park ◽  
Hangyul Lee ◽  
Ju Byeong Chae ◽  
...  

An indole-based fluorescent chemosensor IH-Sal was synthesized to detect Zn2+. IH-Sal displayed a marked fluorescence increment with Zn2+. The detection limit (0.41 μM) of IH-Sal for Zn2+ was greatly below that suggested by the World Health Organization. IH-Sal can quantify Zn2+ in real water samples. More significantly, IH-Sal could determine and depict the presence of Zn2+ in zebrafish. The detecting mechanism of IH-Sal toward Zn2+ was illustrated by fluorescence and UV–visible spectroscopy, DFT calculations, 1H NMR titration and ESI mass.


2001 ◽  
Vol 67 (7) ◽  
pp. 3328-3330 ◽  
Author(s):  
M. S. Islam ◽  
A. Siddika ◽  
M. N. H. Khan ◽  
M. M. Goldar ◽  
M. A. Sadique ◽  
...  

ABSTRACT Five tube-wells in Matlab, Bangladesh, were selected for analysis of selected biophysicochemical parameters. The results showed that all tube-well water samples contained zooplankton and bacteria. Results for some of the parameters were outside the accepted limits recommended by the World Health Organization for drinking water. It is concluded that water from tube-wells should be treated if used as drinking water.


RSC Advances ◽  
2021 ◽  
Vol 11 (50) ◽  
pp. 31656-31662
Author(s):  
Xinyi Yang ◽  
Yue Wang ◽  
Zhuye Shang ◽  
Zexi Zhang ◽  
Haijun Chi ◽  
...  

A quinoline-based fluorescent probe (HQ) has been designed and synthesized for the monitoring of HOCl-mediated treatment response of a rheumatoid arthritis (RA) model and “naked-eye” detection of HOCl in real water samples.


2004 ◽  
Vol 10 (3) ◽  
pp. 429-436
Author(s):  
Issam A. Al Khatib ◽  
Moammar Orabi

Westudied the biological characteristics of drinking-water in three villages in Ramallah and al-Bireh district, by testing the total coliforms. Water samples were collected from rain-fed cisterns between October and November 2001. The results show that 87% of tested samples of drinking-water were highly contaminated and in need of coagulation, filtration and disinfection based on the World Health Organization guidelines for drinking-water, and 10.5% had low contamination and were in need of treatment by disinfection only. Only 2.5% of the tested samples were not contaminated and were suitable for drinking without treatment. The main cause of drinking-water contamination was the presence of cesspits, wastewater and solid waste dumping sites near the cisterns


Sign in / Sign up

Export Citation Format

Share Document