scholarly journals Modeling and Control of an Active Stabilizing Assistant System for a Bicycle

Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 248 ◽  
Author(s):  
Chih-Keng Chen ◽  
Trung-Dung Chu ◽  
Xiao-Dong Zhang

This study designs and controls an active stabilizing assistant system (ASAS) for a bicycle. Using the gyroscopic effect of two spinning flywheels, the ASAS generates torques that assist the rider to stabilize the bicycle in various riding modes. Riding performance and the rider’s safety are improved. To simulate the system dynamic behavior, a model of a bicycle–rider system with the ASAS on the rear seat is developed. This model has 14 degrees of freedom and is derived using Lagrange equations. In order to evaluate the efficacy of the ASAS in interacting with the rider’s control actions, simulations of the bicycle–rider system with the ASAS are conducted. The results for the same rider for the bicycle with an ASAS and on a traditional bicycle are compared for various riding conditions. In three cases of simulation for different riding conditions, the bicycle with the proposed ASAS handles better, with fewer control actions being required than for a traditional bicycle.

2019 ◽  
pp. 20-66
Author(s):  
Heba Elkholy ◽  
Maki K. Habib

This chapter presents the detailed dynamic model of a Vertical Take-Off and Landing (VTOL) type Unmanned Aerial Vehicle (UAV) known as the quadrotor. The mathematical model is derived based on Newton Euler formalism. This is followed by the development of a simulation environment on which the developed model is verified. Four control algorithms are developed to control the quadrotor's degrees of freedom: a linear PID controller, Gain Scheduling-based PID controller, nonlinear Sliding Mode, and Backstepping controllers. The performances of these controllers are compared through the developed simulation environment in terms of their dynamic performance, stability, and the effect of possible disturbances.


Author(s):  
Zhengru Ren ◽  
Roger Skjetne ◽  
Zhen Gao

This paper deals with a nonlinear model predictive control (NMPC) scheme for a winch servo motor to overcome the sudden peak tension in the lifting wire caused by a lumped-mass payload at the beginning of a lifting off or a lowering operation. The crane-wire-payload system is modeled in 3 degrees of freedom with the Newton-Euler approach. Direct multiple shooting and real-time iteration (RTI) scheme are employed to provide feedback control input to the winch servo. Simulations are implemented with MATLAB and CaSADi toolkit. By well tuning the weighting matrices, the NMPC controller can reduce the snatch loads in the lifting wire and the winch loads simultaneously. A comparative study with a PID controller is conducted to verify its performance.


Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3608 ◽  
Author(s):  
Qianqian Wu ◽  
Ning Cui ◽  
Sifang Zhao ◽  
Hongbo Zhang ◽  
Bilong Liu

The environment in space provides favorable conditions for space missions. However, low frequency vibration poses a great challenge to high sensitivity equipment, resulting in performance degradation of sensitive systems. Due to the ever-increasing requirements to protect sensitive payloads, there is a pressing need for micro-vibration suppression. This paper deals with the modeling and control of a maglev vibration isolation system. A high-precision nonlinear dynamic model with six degrees of freedom was derived, which contains the mathematical model of Lorentz actuators and umbilical cables. Regarding the system performance, a double closed-loop control strategy was proposed, and a sliding mode control algorithm was adopted to improve the vibration isolation performance. A simulation program of the system was developed in a MATLAB environment. A vibration isolation performance in the frequency range of 0.01–100 Hz and a tracking performance below 0.01 Hz were obtained. In order to verify the nonlinear dynamic model and the isolation performance, a principle prototype of the maglev isolation system equipped with accelerometers and position sensors was developed for the experiments. By comparing the simulation results and the experiment results, the nonlinear dynamic model of the maglev vibration isolation system was verified and the control strategy of the system was proved to be highly effective.


Author(s):  
Heba Elkholy ◽  
Maki K. Habib

This chapter presents the detailed dynamic model of a Vertical Take-Off and Landing (VTOL) type Unmanned Aerial Vehicle (UAV) known as the quadrotor. The mathematical model is derived based on Newton Euler formalism. This is followed by the development of a simulation environment on which the developed model is verified. Four control algorithms are developed to control the quadrotor's degrees of freedom: a linear PID controller, Gain Scheduling-based PID controller, nonlinear Sliding Mode, and Backstepping controllers. The performances of these controllers are compared through the developed simulation environment in terms of their dynamic performance, stability, and the effect of possible disturbances.


Author(s):  
Prashant K. Jamwal ◽  
Shane Xie ◽  
Jack Farrant

A new wearable parallel robot has been designed and constructed for ankle joint rehabilitation treatments. The robot employs four pneumatic muscle actuators (PMA) together with cables to achieve three rotational degrees of freedom (dof) of its end platform. Parallel topology of the robot, unpredictable environment along with the time varying and non-linear behavior of actuators impose modeling and control challenges which are difficult to comprehend. In this paper an optimal fuzzy dynamic model of the pneumatic muscle has been developed to accurately predict the muscle behavior. The model is capable of mapping the complex relationship in length, force and pressure of the PMA with higher accuracy. This model has been further used to develop a fuzzy control scheme for the ankle robot. Experimental results are obtained to study and model the simultaneous actuation of all the actuators. Comparison with the previous dynamic modeling and control schemes demonstrates an improved performance of the proposed fuzzy controller.


Author(s):  
Hayat Melakhessou ◽  
Alain Berlioz ◽  
Guy Ferraris

This article is devoted to the study of the contact between the drill-string and the well during drilling operations. The study focuses on the Bottom-Hole-Assembly (BHA), which is submitted to compression. The work is motivated by the need to understand the complex behavior of such a system, in order to improve control their constructive and destructive potentials. The contact, which is supposed to be localized on the drill-collar or stabilizers, is prejudicial and involves a premature abrasive wear of the drill-string, reduction of the rate of penetration of the tool into the rock (ROP) and reduction of the mean time between failure (MTBF). The proposed mathematical model is expressed in terms of four independent degrees of freedom. They include the effects of bending and torsion; the whirling motion of the drill-string as well as the phenomena of friction between the drill-string and the well. The tangential effect is modeled by using Coulomb’s law of friction. The nonlinear equations of the movement are derived using Lagrange equations and are solved numerically to obtain the response. Specific attention is paid to the study of friction and a consistent contact model which is capable of taking into account the rolling of the drill-string, both with and without slip, is included in the model. This paper also presents a parametric study on the influence of the initial position of the string and the friction coefficient of the contact on the dynamic behavior of the structure. An experimental set-up, equipped with two optolineic devices, is used to validate the model.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
S. Sadr ◽  
S. Ali A. Moosavian ◽  
P. Zarafshan

Nowadays, aerial robots or Unmanned Aerial Vehicles (UAV) have many applications in civilian and military fields. For example, of these applications is aerial monitoring, picking loads and moving them by different grippers. In this research, a quadrotor with a cable-suspended load with eight degrees of freedom is considered. The purpose is to control the position and attitude of the quadrotor on a desired trajectory in order to move the considered load with constant length of cable. So, the purpose of this research is proposing and designing an antiswing control algorithm for the suspended load. To this end, control and stabilization of the quadrotor are necessary for designing the antiswing controller. Furthermore, this paper is divided into two parts. In the first part, dynamics model is developed using Newton-Euler formulation, and obtained equations are verified in comparison with Lagrange approach. Consequently, a nonlinear control strategy based on dynamic model is used in order to control the position and attitude of the quadrotor. The performance of this proposed controller is evaluated by nonlinear simulations and, finally, the results demonstrate the effectiveness of the control strategy for the quadrotor with suspended load in various maneuvers.


Sign in / Sign up

Export Citation Format

Share Document