scholarly journals Portable Microwave Radar Systems for Short-Range Localization and Life Tracking: A Review

Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1136 ◽  
Author(s):  
Zhengyu Peng ◽  
Changzhi Li

Short-range localization and life tracking have been hot research topics in the fields of medical care, consumer electronics, driving assistance, and indoor robots/drones navigation. Among various sensors, microwave and mm-wave continuous-wave (CW) radar sensors are gaining more popularity in their intrinsic advantages such as simple architecture, easy system integration, high accuracy, relatively low cost, and penetration capability. This paper reviews the recent advances in CW radar systems for short-range localization and life tracking applications, including system improvement, signal processing, as well as the emerging applications integrated with machine learning.

Author(s):  
J. Böck ◽  
M. Wojnowski ◽  
C. Wagner ◽  
H. Knapp ◽  
W. Hartner ◽  
...  

Embedded wafer-level ball grid array (eWLB) is investigated as a low-cost plastic package for automotive radar applications in the 76–81 GHz range. Low transmission losses from chip to package and board are achieved by appropriate circuit and package design. Special measures are taken to effectively remove the heat from the package and to optimize the package process to achieve automotive quality targets. A 77 GHz radar chip set in eWLB package is developed, which can be applied on the system board using standard solder reflow assembly. These radar MMICs provide excellent radio frequency (RF) performance for the next generation automotive radar sensors. The potential for even higher system integration is shown by a radar transceiver with antennas integrated in the eWLB package. These results demonstrate that eWLB technology is an attractive candidate to realize low-cost radar systems and to enable radar safety affordable for everyone in the near future.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2831 ◽  
Author(s):  
Youn-Sik Son ◽  
Hyuk-Kee Sung ◽  
Seo Heo

Recently, many automobiles adopt radar sensors to support advanced driver assistance system (ADAS) functions. As the number of vehicles with radar systems increases the probability of radar signal interference and the accompanying ghost target problems become serious. In this paper, we propose a novel algorithm where we deploy per-vehicle chirp sequence in a frequency modulated continuous wave (FMCW) radar to mitigate the vehicle-to-vehicle radar interference. We devise a chirp sequence set so that the slope of each vehicle’s chirp sequence does not overlap within the set. By assigning one of the chirp sequences to each vehicle, we mitigate the interference from the radar signals transmitted by the neighboring vehicles. We confirm the performance of the proposed method stochastically by computer simulation. The simulation results show that the detection and false alarm performance is improved significantly by the proposed method.


2017 ◽  
Vol 65 (5) ◽  
pp. 1692-1706 ◽  
Author(s):  
Changzhi Li ◽  
Zhengyu Peng ◽  
Tien-Yu Huang ◽  
Tenglong Fan ◽  
Fu-Kang Wang ◽  
...  

2018 ◽  
Vol 16 ◽  
pp. 203-213 ◽  
Author(s):  
Andreas R. Diewald ◽  
Manuel Steins ◽  
Simon Müller

Abstract. With increasing radar activities in the automotive, industrial and private sector, there is a need to test radar sensors in their environment. A radar target simulator can help testing radar systems repeatably. In this paper, the authors present a concept of low-cost hardware for radar target simulation. The theoretical foundations are derived and analyzed. An implementation of a demonstrator operating in the 24 GHz ISM band is shown for which the dynamical range simulation was implemented in a FPGA with fast sampling ADCs and DACs. By using a FIR filtering approach a fine discretization of the range could be reached which will furthermore allow an inherent and automatic Doppler simulation by moving the target.


2020 ◽  
Author(s):  
Nicolae-Catalin Ristea ◽  
Andrei Anghel ◽  
Radu Tudor Ionescu

The interest of the automotive industry has progressively focused on subjects related to driver assistance systems as well as autonomous cars. In order to achieve remarkable results, cars combine a variety of sensors to perceive their surroundings robustly. Among them, radar sensors are indispensable because of their independence of light conditions and the possibility to directly measure velocity. However, radar interference is an issue that becomes prevalent with the increasing amount of radar systems in automotive scenarios. In this paper, we address this issue for frequency modulated continuous wave (FMCW) radars with fully convolutional neural networks (FCNs), a state-of-the-art deep learning technique. The interest of the automotive industry has progressively focused on subjects related to driver assistance systems as well as autonomous cars. Cars combine a variety of sensors to perceive their surroundings robustly. Among them, radar sensors are indispensable because of their independence of lighting conditions and the possibility to directly measure velocity. However, radar interference is an issue that becomes prevalent with the increasing amount of radar systems in automotive scenarios. In this paper, we address this issue for frequency modulated continuous wave (FMCW) radars with fully convolutional neural networks (FCNs), a state-of-the-art deep learning technique. We propose two FCNs that take spectrograms of the beat signals as input, and provide the corresponding clean range profiles as output. We propose two architectures for interference mitigation which outperform the classical zeroing technique. Moreover, considering the lack of databases for this task, we release as open source a large scale data set that closely replicates real world automotive scenarios for single-interference cases, allowing others to objectively compare their future work in this domain. The data set is available for download at: http://github.com/ristea/arim.


2006 ◽  
Vol 4 ◽  
pp. 79-83 ◽  
Author(s):  
M. Jelen ◽  
E. M. Biebl

Abstract. Remote measurement of breath and heartbeat is desirable in many situations. It avoids the discomfort resulting from electrodes applied on the skin for long-term patients or during sports acvtivities. Also, surveillance of high security areas or finding survivors of disasters are interesting applications. Common methods identify the movement of heart and thorax by using the range resolution provided by UWB pulse radar systems. In this paper a low-cost approach is presented, that is based on detection of movement by means of Doppler radar sensors. Combining three sensors working in the ISM bands at 433 MHz, 2.4 GHz and 24 GHz, the presence of persons was reliably detected and the frequency of breath and heartbeat was measured.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Dario Tarchi ◽  
Michele Vespe ◽  
Ciro Gioia ◽  
Francesco Sermi ◽  
Vladimir Kyovtorov ◽  
...  

Radar systems are largely employed for surveillance of wide and remote areas; the recent advent of drones gives the opportunity to exploit radar sensors on board of unmanned aerial platforms. Nevertheless, whereas drone radars are currently available for military applications, their employment in the civilian domain is still limited. The present research focuses on design, prototyping, and testing of an agile, low-cost, mini radar system, to be carried on board of Remotely Piloted Aircraft (RPAs) or tethered aerostats. In particular, the paper faces the challenge to integrate the in-house developed radar sensor with a low-cost navigation board, which is used to estimate attitude and positioning data. In fact, a suitable synchronization between radar and navigation data is essential to properly reconstruct the radar picture whenever the platform is moving or the radar is scanning different azimuthal sectors. Preliminary results, relative to tests conducted in preoperational conditions, are provided and exploited to assert the suitable consistency of the obtained radar pictures. From the results, there is a high consistency between the radar images and the picture of the current environment emerges; finally, the comparison of radar images obtained in different scans shows the stability of the platform.


2020 ◽  
Author(s):  
Nicolae-Catalin Ristea ◽  
Andrei Anghel ◽  
Radu Tudor Ionescu

The interest of the automotive industry has progressively focused on subjects related to driver assistance systems as well as autonomous cars. In order to achieve remarkable results, cars combine a variety of sensors to perceive their surroundings robustly. Among them, radar sensors are indispensable because of their independence of light conditions and the possibility to directly measure velocity. However, radar interference is an issue that becomes prevalent with the increasing amount of radar systems in automotive scenarios. In this paper, we address this issue for frequency modulated continuous wave (FMCW) radars with fully convolutional neural networks (FCNs), a state-of-the-art deep learning technique. The interest of the automotive industry has progressively focused on subjects related to driver assistance systems as well as autonomous cars. Cars combine a variety of sensors to perceive their surroundings robustly. Among them, radar sensors are indispensable because of their independence of lighting conditions and the possibility to directly measure velocity. However, radar interference is an issue that becomes prevalent with the increasing amount of radar systems in automotive scenarios. In this paper, we address this issue for frequency modulated continuous wave (FMCW) radars with fully convolutional neural networks (FCNs), a state-of-the-art deep learning technique. We propose two FCNs that take spectrograms of the beat signals as input, and provide the corresponding clean range profiles as output. We propose two architectures for interference mitigation which outperform the classical zeroing technique. Moreover, considering the lack of databases for this task, we release as open source a large scale data set that closely replicates real world automotive scenarios for single-interference cases, allowing others to objectively compare their future work in this domain. The data set is available for download at: http://github.com/ristea/arim.


Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2801
Author(s):  
Martin Geiger ◽  
Christian Wegner ◽  
Winfried Mayer ◽  
Christian Waldschmidt

The increasing number of radar sensors in commercial and industrial products leads to a growing demand for system functionality tests. Conventional test procedures require expensive anechoic chambers to provide a defined test environment for radar sensors. In this paper, a compact and low cost dielectric waveguide radar target generator for level probing radars is presented. The radar target generator principle is based on a long dielectric waveguide as a one-target scenery. By manipulating the field distribution of the waveguide, a specific reflection of a radar target is generated. Two realistic scenarios for a tank level probing radar are investigated and suitable targets are designed with full wave simulations. Target distances from 13 cm to at least 9 m are realized with an extruded dielectric waveguide with dielectric losses of 2 dB/m at 160 GHz. Low loss (0.5 dB) and low reflection holders are used to fix the waveguide. Due to the dispersion of the dielectric waveguide, a detailed analysis of its impact on frequency-modulated continuous wave (FMCW) radars is given and compared to free-space propagation. The functionality of the radar target generator is verified with a 160-GHz FMCW radar prototype.


Sign in / Sign up

Export Citation Format

Share Document