scholarly journals Precise Point Positioning Using Dual-Frequency GNSS Observations on Smartphone

Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2189 ◽  
Author(s):  
Qiong Wu ◽  
Mengfei Sun ◽  
Changjie Zhou ◽  
Peng Zhang

The update of the Android system and the emergence of the dual-frequency GNSS chips enable smartphones to acquire dual-frequency GNSS observations. In this paper, the GPS L1/L5 and Galileo E1/E5a dual-frequency PPP (precise point positioning) algorithm based on RTKLIB and GAMP was applied to analyze the positioning performance of the Xiaomi Mi 8 dual-frequency smartphone in static and kinematic modes. The results showed that in the static mode, the RMS position errors of the dual-frequency smartphone PPP solutions in the E, N, and U directions were 21.8 cm, 4.1 cm, and 11.0 cm, respectively, after convergence to 1 m within 102 min. The PPP of dual-frequency smartphone showed similar accuracy with geodetic receiver in single-frequency mode, while geodetic receiver in dual-frequency mode has higher accuracy. In the kinematic mode, the positioning track of the smartphone dual-frequency data had severe fluctuations, the positioning tracks derived from the smartphone and the geodetic receiver showed approximately difference of 3–5 m.

GEOMATICA ◽  
2016 ◽  
Vol 70 (2) ◽  
pp. 113-122 ◽  
Author(s):  
Mahmoud Abd Rabbou ◽  
Ahmed El-Rabbany

Single-frequency precise point positioning (PPP) presents a cost-effective positioning technique for a large number of users. However, it possesses low positioning accuracy and convergence time compared with the dual-frequency PPP. Single-frequency PPP commonly employs GPS satellite systems that suffer from poor satellite geometry, especially in dense urban areas. We develop a new single-frequency PPP model that combines the observations of current GNSS constellations, including GPS, GLONASS, Galileo and Beidou. The MGEX IGS final precise products are utilized to account for the orbital and clock errors, while the IGS final global ionospheric maps (GIM) model is used to correct for the ionospheric delay. The GNSS inter-system biases are treated as additional unknowns in the estimation process. The con tri bution of the additional GNSS observations to single-frequency PPP is assessed through solution comparison with its traditional GPS-only counterpart. Various GNSS combinations are considered in the assessment, including GPS/GLONASS, GPS/Galileo, GPS/BeiDou and all-constellation GNSS. It is shown that the additional GNSS observations enhance the PPP solution accuracy and convergence time in comparison with the tra di tional GPS-only solution. Except for stations with a sufficient number of tracked BeiDou satellites, both Galileo and BeiDou have marginal effects on the positioning accuracy due to their limited number of satel lites. However, for stations with a sufficient number of visible BeiDou satellites, an average of 40% PPP accuracy improvement is obtained. The major contribution to the PPP accuracy enhancement is obtained from GLONASS satellite observations.


GPS Solutions ◽  
2021 ◽  
Vol 25 (2) ◽  
Author(s):  
Liang Wang ◽  
Zishen Li ◽  
Ningbo Wang ◽  
Zhiyu Wang

AbstractGlobal Navigation Satellite System raw measurements from Android smart devices make accurate positioning possible with advanced techniques, e.g., precise point positioning (PPP). To achieve the sub-meter-level positioning accuracy with low-cost smart devices, the PPP algorithm developed for geodetic receivers is adapted and an approach named Smart-PPP is proposed in this contribution. In Smart-PPP, the uncombined PPP model is applied for the unified processing of single- and dual-frequency measurements from tracked satellites. The receiver clock terms are parameterized independently for the code and carrier phase measurements of each tracking signal for handling the inconsistency between the code and carrier phases measured by smart devices. The ionospheric pseudo-observations are adopted to provide absolute constraints on the estimation of slant ionospheric delays and to strengthen the uncombined PPP model. A modified stochastic model is employed to weight code and carrier phase measurements by considering the high correlation between the measurement errors and the signal strengths for smart devices. Additionally, an application software based on the Android platform is developed for realizing Smart-PPP in smart devices. The positioning performance of Smart-PPP is validated in both static and kinematic cases. Results show that the positioning errors of Smart-PPP solutions can converge to below 1.0 m within a few minutes in static mode and the converged solutions can achieve an accuracy of about 0.2 m of root mean square (RMS) both for the east, north and up components. For the kinematic test, the RMS values of Smart-PPP positioning errors are 0.65, 0.54 and 1.09 m in the east, north and up components, respectively. Static and kinematic tests both show that the Smart-PPP solutions outperform the internal results provided by the experimental smart devices.


Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2845
Author(s):  
Janina Boisits ◽  
Marcus Glaner ◽  
Robert Weber

Propagation delays of GNSS signals caused by the ionosphere can range up to several meters in zenith direction and need to be corrected. Geodetic receivers observing at two or more frequencies allow the mitigation of the ionospheric effects by forming linear combinations. However, single frequency users depend on external information. The ionosphere delay model Regiomontan developed at TU Wien is a regional ionospheric delay model providing high accuracy information with a latency of only a few hours. The model is based on dual-frequency phase observations of a regional network operated by EPOSA (Echtzeit Positionierung Austria) and partners. The corrections cover a geographical extent for receiver positions within Austria and are provided in the standardized IONEX format. The performance of Regiomontan as well as its application in Precise Point Positioning (PPP) were tested with our in-house PPP software raPPPid using the so-called uncombined model with ionospheric constraint. Various tests, e.g., analyzing the coordinate convergence behavior or the difference between estimated and modeled ionospheric delay, proving the high level of accuracy provided with Regiomontan. We conclude that Regiomontan performs at a similar level of accuracy as IGS final TEC maps, but with explicitly reduced latency.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6447
Author(s):  
Hongyu Zhu ◽  
Linyuan Xia ◽  
Dongjin Wu ◽  
Jingchao Xia ◽  
Qianxia Li

The emergence of dual frequency global navigation satellite system (GNSS) chip actively promotes the progress of precise point positioning (PPP) technology in Android smartphones. However, some characteristics of GNSS signals on current smartphones still adversely affect the positioning accuracy of multi-GNSS PPP. In order to reduce the adverse effects on positioning, this paper takes Huawei Mate30 as the experimental object and presents the analysis of multi-GNSS observations from the aspects of carrier-to-noise ratio, cycle slip, gradual accumulation of phase error, and pseudorange residual. Accordingly, we establish a multi-GNSS PPP mathematical model that is more suitable for GNSS observations from a smartphone. The stochastic model is composed of GNSS step function variances depending on carrier-to-noise ratio, and the robust Kalman filter is applied to parameter estimation. The multi-GNSS experimental results show that the proposed PPP method can significantly reduce the effect of poor satellite signal quality on positioning accuracy. Compared with the conventional PPP model, the root mean square (RMS) of GPS/BeiDou (BDS)/GLONASS static PPP horizontal and vertical errors in the initial 10 min decreased by 23.71% and 62.06%, respectively, and the horizontal positioning accuracy reached 10 cm within 100 min. Meanwhile, the kinematic PPP maximum three-dimensional positioning error of GPS/BDS/GLONASS decreased from 16.543 to 10.317 m.


GEOMATICA ◽  
2013 ◽  
Vol 67 (4) ◽  
pp. 253-257 ◽  
Author(s):  
Mahmoud Abd El-Rahman ◽  
Ahmed El-Rabbany

Geodetic-grade dual-frequency GPS receivers are typically used for precise point positioning (PPP). Unfortunately, these receiver systems are expensive and may not provide a cost-effective solution in many instances. The use of low-cost single-frequency GPS receivers, on the other hand, are limited by the effect of ionospheric delay. A number of mitigation techniques have been proposed to account for the effect of ionospheric delay for single-frequency GPS users. Unfortunately, however, those mitigation techniques are not suitable for PPP. More recently, the U.S. Total Electron Content (USTEC) product has been developed by the National Oceanic and Atmospheric Administration (NOAA), which describes the ionospheric total electron content in high resolution over most of North America. This paper investigates the performance of USTEC and studies its effect on single-frequency PPP solution. A performance comparison with two widely-used ionospheric mitigation models is also presented.


Measurement ◽  
2021 ◽  
Vol 175 ◽  
pp. 109102
Author(s):  
Ju Hong ◽  
Rui Tu ◽  
Rui Zhang ◽  
Lihong Fan ◽  
Junqiang Han ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5917
Author(s):  
Guangxing Wang ◽  
Yadong Bo ◽  
Qiang Yu ◽  
Min Li ◽  
Zhihao Yin ◽  
...  

With the development of Global Navigation Satellite System (GNSS) and the opening of Application Programming Interface (API) of Android terminals, the positioning research of Android terminals has attracted the attention of GNSS community. In this paper, three static experiments were conducted to analyze the raw GNSS observations quality and positioning performances of the smartphones. For the two experimental smartphones, the numbers of visible satellites with dual-frequency signals are unstable and not enough for dual-frequency Precise Point Positioning (PPP) processing all through the day. Therefore, the ionosphere-constrained single-frequency PPP model was employed to improve the positioning with the smartphones, and its performance was evaluated and compared with those of the Single Point Positioning (SPP) and the traditional PPP models. The results show that horizontal positioning accuracies of the smartphones with the improved PPP model are better than 1 m, while those with the SPP and the traditional PPP models are about 2 m.


2019 ◽  
Vol 9 (24) ◽  
pp. 5407 ◽  
Author(s):  
Ren Wang ◽  
Jingxiang Gao ◽  
Nanshan Zheng ◽  
Zengke Li ◽  
Yifei Yao ◽  
...  

An increasing number of researchers have conducted in-depth research on the advantages of low-cost single-frequency (SF) receivers, which can effectively use ionospheric information when compared to dual-frequency ionospheric-free combination. However, SF observations are bound to increase the unknown parameters and prolong the convergence time. It is desirable if the convergence time can be reduced by external information constraints, for example atmospheric constraints, which include ionosphere- or troposphere constraints. In this study, ionospheric delay constraints, tropospheric delay constraints, and their dual constraints were considered. Additionally, a total of 18,720 test experiments were performed. First, the nearest-neighbor extrapolation (NENE), bilinear- (BILI), bicubic- (BICU), and Junkins weighted-interpolation (JUNK) method of Global Ionospheric Map (GIM) grid products were analyzed. The statistically verified BILI in the percentage of convergence time, average convergence time, and computation time consumption of them shows a good advantage. Next, the influences of global troposphere- and ionosphere-constrained on the convergence time of SF Precise Point Positioning (PPP) were analyzed. It is verified that the ionosphere-constrained (TIC2) has significant influence on the convergence time in the horizontal and vertical components, while the troposphere-constrained (TIC1) has better effect on the convergence time in the vertical components within some thresholds. Of course, the dual constraint (TIC3) has the shortest average convergence time, which is at least 46.5% shorter in static mode and 5.4% in kinematic mode than standard SF PPP (TIC0).


2021 ◽  
Author(s):  
Hassan E. Ibrahim

In Global Positioning System (GPS), Precise Point Positioning (PPP) achieves the highest accuracy in point positioning. It approaches centimetre-level accuracy in static mode and sub-decimetre accuracy in kinematic mode. PPP is an alternative approach to carrier-phase-based Differential GPS (DGPS) and offers advantages over DGPS. PPP uses GPS observations from a single receiver for position estimation, which is simpler than using more than one GPS receiver. However, PPP needs rigorous modelling for all errors and biases, which are otherwise cancelled out or mitigated when using DGPS. PPP’s popularity is on the rise, as it is ideal for land-vehicle positioning and navigation. However, in challenging environments, PPP suffers from a signal loss that prevent continuous navigation or a reduction in the number of visible satellites that causes accuracy degradation. This research integrates PPP with a Reduced Inertial Sensors System (RISS) — a low-cost system that uses data from reduced MEMS-based inertial sensors and vehicle odometry — to provide accurate and inexpensive land-vehicle navigation systems. The system is integrated in a tightly coupled mode through the use of an Extended Kalman Filter (EKF), which employs an improved error model for the RISS data. The system was tested using data from real driving routes with single-frequency code-based PPP/RISS (SF-code-PPP/RISS), dual-frequency code-based PPP (DF-code-PPP/RISS), smoothed dual-frequency code-based PPP (S-DF-code-PPP/RISS), and code- and carrier-phase-based PPP (code-carrier-PPP/RISS). The performance of the developed PPP/RISS was evaluated using position RMS and maximum errors during continuous GPS availability as well as during signal outages. The developed integrated algorithms were assessed using three real road tests that capture different navigational conditions. The results show that when five or more satellites are available, code-carrier-PPP/RISS solution is superior to that of SF- and DF-code-PP/RISS. For latitude, code-carrier-PPP/RISS solution was 47% and 20% more precise than the SF- and DF-code- PP/RISS counterparts, respectively. For longitude, code-carrier-PPP/RISS solution was 65% and 31% more precise than the SF- and DF-Code-PP/RISS counterparts, respectively. Similarly, the altitude solution was improved by 46% and 25%, respectively. During GPS signal outages of 60 seconds, code-carrier-PPP/RISS’s algorithms outperformed that of SF- and DF-code-PPP/RISS by about 35% when the satellite availability level was set to three satellites. For other satellite availability levels, the algorithms performed almost identically.


Sign in / Sign up

Export Citation Format

Share Document