scholarly journals Evaluating the Implications of Varying Bluetooth Low Energy (BLE) Transmission Power Levels on Wireless Indoor Localization Accuracy and Precision

Sensors ◽  
2019 ◽  
Vol 19 (15) ◽  
pp. 3282 ◽  
Author(s):  
Umair Mujtaba Qureshi ◽  
Zuneera Umair ◽  
Gerhard Petrus Hancke

Bluetooth Low Energy (BLE) based Wireless Indoor Localization System (WILS) with high localization accuracy and high localization precision is a key requirement in enabling the Internet of Things (IoT) in today’s applications. In this paper, we investigated the effect of BLE signal variations on indoor localization caused by the change in BLE transmission power levels. This issue is not often discussed as most of the works on localization algorithms use the highest power levels but has important practical implications for energy efficiency, e.g., if a designer would like to trade-off localization performance and node lifetime. To analyze the impact, we used the established trilateration based localization model with two methods i.e., Centroid Approximation (CA) and Minimum Mean Square Error (MMSE). We observed that trilateration based localization with MMSE method outperforms the CA method. We further investigated the use of two filters i.e., Low Pass Filter (LPF) and Kalman Filter (KF) and evaluated their effects in terms of mitigating the random variations from BLE signal. In comparison to non-filter based approach, we observed a great improvement in localization accuracy and localization precision with a filter-based approach. Furthermore, in comparison to LPF based trilateration localization with CA, the performance of a KF based trilateration localization with MMSE is far better. An average of 1 m improvement in localization accuracy and approximately 50% improvement in localization precision is observed by using KF in trilateration based localization model with the MMSE method. In conclusion, with KF in trilateration based localization model with MMSE method effectively eliminates random variations in BLE RSS with multiple transmission power levels and thus results in a BLE based WILS with high accuracy and high precision.

Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4462 ◽  
Author(s):  
Paolo Baronti ◽  
Paolo Barsocchi ◽  
Stefano Chessa ◽  
Fabio Mavilia ◽  
Filippo Palumbo

Indoor localization has become a mature research area, but further scientific developments are limited due to the lack of open datasets and corresponding frameworks suitable to compare and evaluate specialized localization solutions. Although several competitions provide datasets and environments for comparing different solutions, they hardly consider novel technologies such as Bluetooth Low Energy (BLE), which is gaining more and more importance in indoor localization due to its wide availability in personal and environmental devices and to its low costs and flexibility. This paper contributes to cover this gap by: (i) presenting a new indoor BLE dataset; (ii) reviewing several, meaningful use cases in different application scenarios; and (iii) discussing alternative uses of the dataset in the evaluation of different positioning and navigation applications, namely localization, tracking, occupancy and social interaction.


Author(s):  
Smita Sanjay Ambarkar ◽  
Rakhi Dattatraya Akhare

This chapter focuses on the comprehensive contents of various applications and principles related to Bluetooth low energy (BLE). The internet of things (IoT) applications like indoor localization, proximity detection problem by using Bluetooth low energy, and enhancing the sales in the commercial market by using BLE have the same database requirement and common implementation idea. The real-world applications are complex and require intensive computation. These computations should take less time, cost, and battery power. The chapter mainly focuses on the usage of BLE beacons for indoor localization. The motive behind the study of BLE devices is that it is supported by mobile smart devices that augment its application exponentially.


2019 ◽  
Vol 26 (12) ◽  
pp. 1773-1777 ◽  
Author(s):  
Parvin Malekzadeh ◽  
Arash Mohammadi ◽  
Mihai Barbulescu ◽  
Konstantinos N. Plataniotis

Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4550 ◽  
Author(s):  
Vasilis Stavrou ◽  
Cleopatra Bardaki ◽  
Dimitris Papakyriakopoulos ◽  
Katerina Pramatari

This paper has developed and deployed a Bluetooth Low Energy (BLE) beacon-based indoor positioning system in a two-floor retail store. The ultimate purpose of this study was to compare the different indoor positioning techniques towards achieving efficient position determination of moving customers in the retail store. The innovation of this research lies in its context (the retail store) and the fact that this is not a laboratory, controlled experiment. Retail stores are challenging environments with multiple sources of noise (e.g., shoppers’ moving) that impede indoor localization. To the best of the authors’ knowledge, this is the first work concerning indoor localization of consumers in a real retail store. This study proposes an ensemble filter with lower absolute mean and root mean squared errors than the random forest. Moreover, the localization error is approximately 2 m, while for the random forest, it is 2.5 m. In retail environments, even a 0.5 m deviation is significant because consumers may be positioned in front of different store shelves and, thus, different product categories. The more accurate the consumer localization, the more accurate and rich insights on the customers’ shopping behavior. Consequently, retailers can offer more effective customer location-based services (e.g., personalized offers) and, overall, better consumer localization can improve decision making in retailing.


Sensors ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 133 ◽  
Author(s):  
Imran Ashraf ◽  
Soojung Hur ◽  
Sangjoon Park ◽  
Yongwan Park

A quickly growing location-based services area has led to increased demand for indoor positioning and localization. Undoubtedly, Wi-Fi fingerprint-based localization is one of the promising indoor localization techniques, yet the variation of received signal strength is a major problem for accurate localization. Magnetic field-based localization has emerged as a new player and proved a potential indoor localization technology. However, one of its major limitations is degradation in localization accuracy when various smartphones are used. The localization performance is different from various smartphones even with the same localization technique. This research leverages the use of a deep neural network-based ensemble classifier to perform indoor localization with heterogeneous devices. The chief aim is to devise an approach that can achieve a similar localization accuracy using various smartphones. Features extracted from magnetic data of Galaxy S8 are fed into neural networks (NNs) for training. The experiments are performed with Galaxy S8, LG G6, LG G7, and Galaxy A8 smartphones to investigate the impact of device dependence on localization accuracy. Results demonstrate that NNs can play a significant role in mitigating the impact of device heterogeneity and increasing indoor localization accuracy. The proposed approach is able to achieve a localization accuracy of 2.64 m at 50% on four different devices. The mean error is 2.23 m, 2.52 m, 2.59 m, and 2.78 m for Galaxy S8, LG G6, LG G7, and Galaxy A8, respectively. Experiments on a publicly available magnetic dataset of Sony Xperia M2 using the proposed approach show a mean error of 2.84 m with a standard deviation of 2.24 m, while the error at 50% is 2.33 m. Furthermore, the impact of devices on various attitudes on the localization accuracy is investigated.


2019 ◽  
Vol 9 (19) ◽  
pp. 4081 ◽  
Author(s):  
Marcin Kolakowski

One of the functionalities which are desired in Ambient and Assisted Living systems is accurate user localization at their living place. One of the best-suited solutions for this purpose from the cost and energy efficiency points of view are Bluetooth Low Energy (BLE)-based localization systems. Unfortunately, their localization accuracy is typically around several meters and might not be sufficient for detection of abnormal situations in elderly persons behavior. In this paper, a concept of a hybrid positioning system combining typical BLE-based infrastructure and proximity sensors is presented. The proximity sensors act a supporting role by additionally covering vital places, where higher localization accuracy is needed. The results from both parts are fused using two types of hybrid algorithms. The paper contains results of simulation and experimental studies. During the experiment, an exemplary proximity sensor VL53L1X has been tested and its basic properties modeled for use in the proposed algorithms. The results of the study have shown that employing proximity sensors can significantly improve localization accuracy in places of interest.


Sign in / Sign up

Export Citation Format

Share Document