scholarly journals Gas Sensing Properties of Mg-Incorporated Metal–Organic Frameworks

Sensors ◽  
2019 ◽  
Vol 19 (15) ◽  
pp. 3323 ◽  
Author(s):  
Jae-Hyoung Lee ◽  
Thanh-Binh Nguyen ◽  
Duy-Khoi Nguyen ◽  
Jae-Hun Kim ◽  
Jin-Young Kim ◽  
...  

The gas sensing properties of two novel series of Mg-incorporated metal–organic frameworks (MOFs), termed Mg-MOFs-I and -II, were assessed. The synthesized iso-reticular type Mg-MOFs exhibited good crystallinity, high thermal stability, needle-shape morphology and high surface area (up to 2900 m2·g−1), which are promising for gas sensing applications. Gas-sensing studies of gas sensors fabricated from Mg-MOFs-II revealed better sensing performance, in terms of the sensor dynamics and sensor response, at an optimal operating temperature of 200 °C. The MOF gas sensor with a larger pore size and volume showed shorter response and recovery times, demonstrating the importance of the pore size and volume on the kinetic properties of MOF-based gas sensors. The gas-sensing results obtained in this study highlight the potential of Mg-MOFs gas sensors for the practical monitoring of toxic gases in a range of environments.

2015 ◽  
Vol 39 (9) ◽  
pp. 7060-7065 ◽  
Author(s):  
Wenhui Li ◽  
Xiaofeng Wu ◽  
Haidi Liu ◽  
Jiayuan Chen ◽  
Wenxiang Tang ◽  
...  

Hierarchical ZnO hollow cubes constructed using Zn-based metal–organic frameworks enhance significantly chemical sensitivity towards low-concentration gaseous benzene.


RSC Advances ◽  
2014 ◽  
Vol 4 (90) ◽  
pp. 49521-49528 ◽  
Author(s):  
Mohammad R. Alenezi ◽  
T. H. Alzanki ◽  
A. M. Almeshal ◽  
A. S. Alshammari ◽  
M. J. Beliatis ◽  
...  

Enhanced gas sensing properties of ZnO were achieved by designing hierarchical nanostructures with high surface-to-volume ratios and more exposed polar facets.


2017 ◽  
Vol 251 ◽  
pp. 27-33 ◽  
Author(s):  
Xiao Wang ◽  
Shouwei Zhang ◽  
Minghui Shao ◽  
Jinzhao Huang ◽  
Xiaolong Deng ◽  
...  

2015 ◽  
Vol 3 (24) ◽  
pp. 12796-12803 ◽  
Author(s):  
Yiting Wang ◽  
Yinyun Lü ◽  
Wenwen Zhan ◽  
Zhaoxiong Xie ◽  
Qin Kuang ◽  
...  

Porous Cu2O/CuO polyhedral cages with excellent gas-sensing properties were successfully fabricated by thermal decomposition of Cu-based metal–organic frameworks composed of polyhedral crystals.


RSC Advances ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 3319-3328 ◽  
Author(s):  
Chun Li ◽  
Lingmin Yu ◽  
Xinhui Fan ◽  
Mingli Yin ◽  
Ning Nan ◽  
...  

Nanowalls are novel nanostructures whose 3D porous network morphology holds great potential for applications as gas sensors.


Nanomaterials ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 851 ◽  
Author(s):  
Yamei Zeng ◽  
Shiwei Lin ◽  
Ding Gu ◽  
Xiaogan Li

Two-dimensional (2D) nanomaterials have attracted a large amount of attention regarding gas sensing applications, because of their high surface-to-volume ratio and unique chemical or physical gas adsorption capabilities. As an important research method, theoretical calculations have been massively applied in predicting the potentially excellent gas sensing properties of these 2D nanomaterials. In this review, we discuss the contributions of theoretical calculations in the study of the gas sensing properties of 2D nanomaterials. Firstly, we elaborate on the gas sensing mechanisms of 2D layered nanomaterials, such as the traditional charge transfer mechanism, and a standard for distinguishing between physical and chemical adsorption, from the perspective of theoretical calculations. Then, we describe how to conduct a theoretical analysis to explain or predict the gas sensing properties of 2D nanomaterials. Thirdly, we discuss three important methods that have been applied in order to improve the gas sensing properties, that is, defect functionalization (vacancy, edge, grain boundary, and doping), heterojunctions, and electric fields. Among these strategies, theoretical calculations play a very important role in explaining the mechanisms underlying the enhanced gas sensing properties. Finally, we summarize both the advantages and limitations of the theoretical calculations, and present perspectives for further research on the 2D nanomaterials-based gas sensors.


Sign in / Sign up

Export Citation Format

Share Document