scholarly journals Improving the Performance of Pseudo-Random Single-Photon Counting Ranging Lidar

Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3620
Author(s):  
Yang Yu ◽  
Bo Liu ◽  
Zhen Chen

A new encoding method is proposed to improve the performance of pseudo-random single-photon counting ranging (PSPCR) Lidar. The encoding principle and methodology are presented. In addition, the influence of detector’s dead time on the detection probability is analyzed with theoretical derivation and Monte Carlo simulation. Meanwhile, we propose using macro code as the analysis unit to quantitatively analyze the detection probability and single-photon detection efficiency of the traditional PSPCR Lidar and the modulated PSPCR Lidar. The Monte Carlo simulation and experiment prove that the proposed method exhibited better ranging performance than the traditional PSPCR Lidar system.

2013 ◽  
Vol 11 (11) ◽  
pp. 110401-110404 ◽  
Author(s):  
Yonghong Yan Yonghong Yan ◽  
Lai Wei Lai Wei ◽  
Xianlun Wen Xianlun Wen ◽  
Yuchi Wu Yuchi Wu ◽  
Zongqing Zhao Zongqing Zhao ◽  
...  

2011 ◽  
Vol 679-680 ◽  
pp. 551-554
Author(s):  
D. Kurt Gaskill ◽  
Jun Hu ◽  
X. Xin ◽  
Jian Hui Zhao ◽  
Brenda L. VanMil ◽  
...  

The effects of proton irradiation on uv 4H-SiC single photon avalanche photodiodes (SPADs) are reported. The SPADs, grown by chemical vapor deposition, were designed for uv operation with dark count rates (DCR) of about 30 kHz and single photon detection efficiency (SPDE) of 4.89%. The SPADs were irradiated with 2 MeV protons to a fluence of 1012 cm-2. After irradiation, the I-V characteristics show forward voltage (<1.9 V) generation-recombination currents 2 to 3 times higher than before irradiation. Single photon counting measurements imply generation-recombination centers created in the band gap after irradiation. For threshold voltage ranging from 23 to 26 mV, the 4H-SiC SPAD showed low DCR (<54 kHz) and high SPDE (>1%) after irradiation. The SPADs demonstrated proton radiation tolerance for geosynchronous space applications.


2013 ◽  
Vol 25 (1) ◽  
pp. 211-214
Author(s):  
闫永宏 Yan Yonghong ◽  
赵宗清 Zhao Zongqing ◽  
吴玉迟 Wu Yuchi ◽  
魏来 Wei Lai ◽  
洪伟 Hong Wei ◽  
...  

2008 ◽  
Vol 600-603 ◽  
pp. 1203-1206 ◽  
Author(s):  
Jun Hu ◽  
Xiao Bin Xin ◽  
Petre Alexandrov ◽  
Jian Hui Zhao ◽  
Brenda L. VanMil ◽  
...  

This paper reports a 4H-SiC single photo avalanche diode (SPAD) operating at the solar blind wavelength of 280 nm. The SPAD has an avalanche breakdown voltage of 114V. At 90% and 95% of the breakdown voltage, the SPAD shows a low dark current of 57.2fA and 159fA, respectively. The quantum efficiency of 29.8% at 280nm and <0.007% at 400nm indicates a high UV-to-visible rejection ratio of >4300. Single photon counting measurement at 280nm shows that a single photon detection efficiency of 2.83% with a low dark count rate of 22kHz is achieved at the avalanche breakdown voltage of 116.8V.


Electronics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1131
Author(s):  
Ming Chen ◽  
Chenghao Li ◽  
Alan P. Morrison ◽  
Shijie Deng ◽  
Chuanxin Teng ◽  
...  

A compact single-photon counting module that can accurately control the bias voltage and hold-off time is developed in this work. The module is a microcontroller-based system which mainly consists of a microcontroller, a programmable negative voltage generator, a silicon-based single-photon avalanche diode, and an integrated active quench and reset circuit. The module is 3.8 cm × 3.6 cm × 2 cm in size and can communicate with the end user and be powered through a USB cable (5 V). In this module, the bias voltage of the single-photon avalanche diode (SPAD) is precisely controllable from −14 V ~ −38 V and the hold-off time (consequently the dead time) of the SPAD can be adjusted from a few nanoseconds to around 1.6 μs with a setting resolution of ∼6.5 ns. Experimental results show that the module achieves a minimum dead time of around 28.5 ns, giving a saturation counting rate of around 35 Mcounts/s. Results also show that at a controlled reverse bias voltage of 26.8 V, the dark count rate measured is about 300 counts/s and the timing jitter measured is about 158 ps. Photodetection probability measurements show that the module is suited for detection of visible light from 450 nm to 800 nm with a 40% peak photon detection efficiency achieved at around 600 nm.


2009 ◽  
Author(s):  
Leye Aina ◽  
Ayub Fathimulla ◽  
Harry Hier ◽  
Mark Lecates ◽  
Sachi Babu ◽  
...  

2007 ◽  
Author(s):  
Leye Aina ◽  
Ayub Fathimulla ◽  
Harry Hier ◽  
Mark Lecates ◽  
Parth Patel ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4850
Author(s):  
Aurora Maccarone ◽  
Giulia Acconcia ◽  
Ulrich Steinlehner ◽  
Ivan Labanca ◽  
Darryl Newborough ◽  
...  

We present an optical depth imaging system suitable for highly scattering underwater environments. The system used the time-correlated single-photon counting (TCSPC) technique and the time-of-flight approach to obtain depth profiles. The single-photon detection was provided by a linear array of single-photon avalanche diode (SPAD) detectors fabricated in a customized silicon fabrication technology for optimized efficiency, dark count rate, and jitter performance. The bi-static transceiver comprised a pulsed laser diode source with central wavelength 670 nm, a linear array of 16 × 1 Si-SPAD detectors, with a dedicated TCSPC acquisition module. Cylindrical lenses were used to collect the light scattered by the target and image it onto the sensor. These laboratory-based experiments demonstrated single-photon depth imaging at a range of 1.65 m in highly scattering conditions, equivalent up to 8.3 attenuation lengths between the system and the target, using average optical powers of up to 15 mW. The depth and spatial resolution of this sensor were investigated in different scattering conditions.


Sign in / Sign up

Export Citation Format

Share Document