scholarly journals Low-Cost Open Source Ultrasound-Sensing Based Navigational Support for the Visually Impaired

Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3783 ◽  
Author(s):  
Petsiuk ◽  
Pearce

Nineteen million Americans have significant vision loss. Over 70% of these are not employed full-time, and more than a quarter live below the poverty line. Globally, there are 36 million blind people, but less than half use white canes or more costly commercial sensory substitutions. The quality of life for visually impaired people is hampered by the resultant lack of independence. To help alleviate these challenges this study reports on the development of a low-cost, open-source ultrasound-based navigational support system in the form of a wearable bracelet to allow people with the lost vision to navigate, orient themselves in their surroundings and avoid obstacles when moving. The system can be largely made with digitally distributed manufacturing using low-cost 3-D printing/milling. It conveys point-distance information by utilizing the natural active sensing approach and modulates measurements into haptic feedback with various vibration patterns within the four-meter range. It does not require complex calibrations and training, consists of the small number of available and inexpensive components, and can be used as an independent addition to traditional tools. Sighted blindfolded participants successfully demonstrated the device for nine primary everyday navigation and guidance tasks including indoor and outdoor navigation and avoiding collisions with other pedestrians.

Author(s):  
Aliaksei L. Petsiuk ◽  
Joshua M. Pearce

Nineteen million Americans have significant vision loss. Over 70% of these are not employed full-time, and more than a quarter live below the poverty line. Globally, there are 36 million blind people, but less than half use white canes or more costly commercial sensory substitutions. The quality of life for visually impaired people is hampered by the resultant lack of independence. To help alleviate these challenges this study reports on the development of a low-cost (<$24), open-source navigational support system to allow people with the lost vision to navigate, orient themselves in their surroundings and avoid obstacles when moving. The system can be largely made with digitally distributed manufacturing using low-cost 3-D printing/milling. It conveys point-distance information by utilizing the natural active sensing approach and modulates measurements into haptic feedback with various vibration patterns within the distance range of 3 m. The developed system allows people with lost vision to solve the primary tasks of navigation, orientation, and obstacle detection (>20 cm stationary, moving up to 0.5 m/s) to ensure their safety and mobility. Sighted blindfolded participants successfully demonstrated the device for eight primary everyday navigation and guidance tasks including indoor and outdoor navigation and avoiding collisions with other pedestrians.


2020 ◽  
Vol 52 ◽  
pp. 55-61
Author(s):  
Ettore Potente ◽  
Cosimo Cagnazzo ◽  
Alessandro Deodati ◽  
Giuseppe Mastronuzzi

2020 ◽  
Vol 24 (03) ◽  
pp. 515-520
Author(s):  
Vattumilli Komal Venugopal ◽  
Alampally Naveen ◽  
Rajkumar R ◽  
Govinda K ◽  
Jolly Masih

2020 ◽  
Author(s):  
Andrew Fang ◽  
Jonathan Kia-Sheng Phua ◽  
Terrence Chiew ◽  
Daniel De-Liang Loh ◽  
Lincoln Ming Han Liow ◽  
...  

BACKGROUND During the Coronavirus Disease 2019 (COVID-19) outbreak, community care facilities (CCF) were set up as temporary out-of-hospital isolation facilities to contain the surge of cases in Singapore. Confined living spaces within CCFs posed an increased risk of communicable disease spread among residents. OBJECTIVE This inspired our healthcare team managing a CCF operation to design a low-cost communicable disease outbreak surveillance system (CDOSS). METHODS Our CDOSS was designed with the following considerations: (1) comprehensiveness, (2) efficiency through passive reconnoitering from electronic medical record (EMR) data, (3) ability to provide spatiotemporal insights, (4) low-cost and (5) ease of use. We used Python to develop a lightweight application – Python-based Communicable Disease Outbreak Surveillance System (PyDOSS) – that was able perform syndromic surveillance and fever monitoring. With minimal user actions, its data pipeline would generate daily control charts and geospatial heat maps of cases from raw EMR data and logged vital signs. PyDOSS was successfully implemented as part of our CCF workflow. We also simulated a gastroenteritis (GE) outbreak to test the effectiveness of the system. RESULTS PyDOSS was used throughout the entire duration of operation; the output was reviewed daily by senior management. No disease outbreaks were identified during our medical operation. In the simulated GE outbreak, PyDOSS was able to effectively detect an outbreak within 24 hours and provided information about cluster progression which could aid in contact tracing. The code for a stock version of PyDOSS has been made publicly available. CONCLUSIONS PyDOSS is an effective surveillance system which was successfully implemented in a real-life medical operation. With the system developed using open-source technology and the code made freely available, it significantly reduces the cost of developing and operating CDOSS and may be useful for similar temporary medical operations, or in resource-limited settings.


2021 ◽  
pp. 1-12
Author(s):  
Hamilton Hernandez ◽  
Isabelle Poitras ◽  
Linda Fay ◽  
Ajmal Khan ◽  
Jean-Sébastien Roy ◽  
...  

BACKGROUND: Video games can be used to motivate repetitive movements in paediatric rehabilitation. Most upper limb videogaming therapies do not however include haptic feedback which can limit their impact. OBJECTIVE: To explore the effectiveness of interactive computer play with haptic feedback for improving arm function in children with cerebral palsy (CP). METHODS: Eleven children with hemiplegic CP attended 12 therapist-guided sessions in which they used a gaming station composed of the Novint Falcon, custom-built handles, physical supports for the child’s arm, games, and an application to manage and calibrate therapeutic settings. Outcome measures included Quality of Upper Extremity Skills Test (QUEST) and Canadian Occupational Performance Measure (COPM). The study protocol is registered on clinicaltrials.gov (NCT04298411). RESULTS: Participants completed a mean of 3858 wrist extensions and 6665 elbow/shoulder movements during the therapist-guided sessions. Clinically important improvements were observed on the dissociated and grasp dimensions on the QUEST and the performance and satisfaction scales of the COPM (all p< 0.05). CONCLUSION: This study suggests that computer play with haptic feedback could be a useful and playful option to help improve the hand/arm capacities of children with CP and warrants further study. The opportunities and challenges of using low-cost, mainstream gaming software and hardware for therapeutic applications are discussed.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 848
Author(s):  
Karla Miriam Reyes Leiva ◽  
Milagros Jaén-Vargas ◽  
Miguel Ángel Cuba ◽  
Sergio Sánchez Lara ◽  
José Javier Serrano Olmedo

The rehabilitation of a visually impaired person (VIP) is a systematic process where the person is provided with tools that allow them to deal with the impairment to achieve personal autonomy and independence, such as training for the use of the long cane as a tool for orientation and mobility (O&M). This process must be trained personally by specialists, leading to a limitation of human, technological and structural resources in some regions, especially those with economical narrow circumstances. A system to obtain information about the motion of the long cane and the leg using low-cost inertial sensors was developed to provide an overview of quantitative parameters such as sweeping coverage and gait analysis, that are currently visually analyzed during rehabilitation. The system was tested with 10 blindfolded volunteers in laboratory conditions following constant contact, two points touch, and three points touch travel techniques. The results indicate that the quantification system is reliable for measuring grip rotation, safety zone, sweeping amplitude and hand position using orientation angles with an accuracy of around 97.62%. However, a new method or an improvement of hardware must be developed to improve gait parameters’ measurements, since the step length measurement presented a mean accuracy of 94.62%. The system requires further development to be used as an aid in the rehabilitation process of the VIP. Now, it is a simple and low-cost technological aid that has the potential to improve the current practice of O&M.


Author(s):  
Romain Nicot ◽  
Edwige Hurteloup ◽  
Sébastien Joachim ◽  
Charles Druelle ◽  
Jean-Marc Levaillant

Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2944
Author(s):  
Benjamin James Ralph ◽  
Marcel Sorger ◽  
Benjamin Schödinger ◽  
Hans-Jörg Schmölzer ◽  
Karin Hartl ◽  
...  

Smart factories are an integral element of the manufacturing infrastructure in the context of the fourth industrial revolution. Nevertheless, there is frequently a deficiency of adequate training facilities for future engineering experts in the academic environment. For this reason, this paper describes the development and implementation of two different layer architectures for the metal processing environment. The first architecture is based on low-cost but resilient devices, allowing interested parties to work with mostly open-source interfaces and standard back-end programming environments. Additionally, one proprietary and two open-source graphical user interfaces (GUIs) were developed. Those interfaces can be adapted front-end as well as back-end, ensuring a holistic comprehension of their capabilities and limits. As a result, a six-layer architecture, from digitization to an interactive project management tool, was designed and implemented in the practical workflow at the academic institution. To take the complexity of thermo-mechanical processing in the metal processing field into account, an alternative layer, connected with the thermo-mechanical treatment simulator Gleeble 3800, was designed. This framework is capable of transferring sensor data with high frequency, enabling data collection for the numerical simulation of complex material behavior under high temperature processing. Finally, the possibility of connecting both systems by using open-source software packages is demonstrated.


1994 ◽  
Vol 88 (2) ◽  
pp. 152-156 ◽  
Author(s):  
K.J. McCulloh ◽  
I. Crawford ◽  
J.D. Resnick

This article describes an eight-week structured social support group for midlife and older adults who are adventitiously visually impaired. The group objectives, topics covered, and issues encountered are presented, along with recommendations for developing future support groups for this population.


Sign in / Sign up

Export Citation Format

Share Document