scholarly journals ForkDec: Accurate Detection for Selfish Mining Attacks

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Zhaojie Wang ◽  
Qingzhe Lv ◽  
Zhaobo Lu ◽  
Yilei Wang ◽  
Shengjie Yue

Incentive mechanism is the key to the success of the Bitcoin system as a permissionless blockchain. It encourages participants to contribute their computing resources to ensure the correctness and consistency of user transaction records. Selfish mining attacks, however, prove that Bitcoin’s incentive mechanism is not incentive-compatible, which is contrary to traditional views. Selfish mining attacks may cause the loss of mining power, especially those of honest participants, which brings great security challenges to the Bitcoin system. Although there are a series of studies against selfish mining behaviors, these works have certain limitations: either the existing protocol needs to be modified or the detection effect for attacks is not satisfactory. We propose the ForkDec, a high-accuracy system for selfish mining detection based on the fully connected neural network, for the purpose of effectively deterring selfish attackers. The neural network contains a total of 100 neurons (10 hidden layers and 10 neurons per layer), learned on a training set containing about 200,000 fork samples. The data set, used to train the model, is generated by a Bitcoin mining simulator that we preconstructed. We also applied ForkDec to the test set to evaluate the attack detection and achieved a detection accuracy of 99.03%. The evaluation experiment demonstrates that ForkDec has certain application value and excellent research prospects.

Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4161 ◽  
Author(s):  
Hang ◽  
Zhang ◽  
Chen ◽  
Zhang ◽  
Wang

Plant leaf diseases are closely related to people's daily life. Due to the wide variety of diseases, it is not only time-consuming and labor-intensive to identify and classify diseases by artificial eyes, but also easy to be misidentified with having a high error rate. Therefore, we proposed a deep learning-based method to identify and classify plant leaf diseases. The proposed method can take the advantages of the neural network to extract the characteristics of diseased parts, and thus to classify target disease areas. To address the issues of long training convergence time and too-large model parameters, the traditional convolutional neural network was improved by combining a structure of inception module, a squeeze-and-excitation (SE) module and a global pooling layer to identify diseases. Through the Inception structure, the feature data of the convolutional layer were fused in multi-scales to improve the accuracy on the leaf disease dataset. Finally, the global average pooling layer was used instead of the fully connected layer to reduce the number of model parameters. Compared with some traditional convolutional neural networks, our model yielded better performance and achieved an accuracy of 91.7% on the test data set. At the same time, the number of model parameters and training time have also been greatly reduced. The experimental classification on plant leaf diseases indicated that our method is feasible and effective.


Circulation ◽  
2018 ◽  
Vol 138 (Suppl_2) ◽  
Author(s):  
Tetsuo Hatanaka ◽  
Hiroshi Kaneko ◽  
Aki Nagase ◽  
Seishiro Marukawa

Introduction: An interruption of chest compressions during CPR adversely affects patient outcome. Currently, however, periodical interruptions are unavoidable to assess the ECG rhythms and to give shocks for defibrillation if indicated. Evidence suggests a 5-second interruption immediately before shocks may translate into ~15% reduction of the chance of survival. The objective of this study was to build, train and validate a convolutional neural network (artificial intelligence) for detecting shock-indicated rhythms out of ECG signals corrupted with chest compression artifacts during CPR. Methods: Our convolutional neural network consisted of 7 convolutional layers, 3 pooling layers and 3 fully-connected layers for binary classification (shock-indicated vs non-shock-indicated). The input data set was a spectrogram consisting of 56 frequency-bins by 80 time-segments transformed from a 12.16-seconds ECG signal. From AEDs used for 236 patients with out-of-hospital cardiac arrest, 1,223 annotated ECG strips were extracted. Ventricular fibrillation and wide-QRS ventricular tachycardia with HR>180 beats/min were annotated as shock-indicated, and the others as non-shock-indicated. The total length of the strips was 8:49:57 (hr:min:sec) and 8:02:07 respectively for shock-indicated and non-shock-indicated rhythms. Those strips were converted into 465,102 spectrograms allowing partial overlaps and were fed into the neural network for training. The validation data set was obtained from a separate group of 225 patients, from which annotated ECG strips (total duration of 62:11:28) were extracted, yielding 43,800 spectrograms. Results: After the training, both the sensitivity and specificity of detecting shock-indicated rhythms over the training data set were 99.7% - 100% (varying with training instances). The sensitivity and specificity over the validation data set were 99.3% - 99.7% and 99.3% - 99.5%, respectively. Conclusions: The convolutional neural network has accurately and continuously evaluated the ECG rhythms during CPR, potentially obviating the need for rhythm checks for defibrillation during CPR.


Vestnik MEI ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 103-109
Author(s):  
Andrey I. Mamontov ◽  

In solving the classification problem, a fully connected trainable neural network (with adjusting the parameters represented by double-precision real numbers) is used as a mathematical model. After the training is completed, the neural network parameters are rounded and represented as fixed-point numbers (integers). The aim of the study is to reduce the required amount of the computing system memory for storing the obtained integer parameters. To reduce the amount of memory, the following methods for storing integer parameters are developed, which are based on representing the linear polynomials included in a fully connected neural network using compositions of simpler functions: - a method based on representing the considered polynomial as a sum of simpler polynomials; - a method based on separately storing the information about additions and multiplications. In the experiment with the MNIST data set, it took 1.41 MB to store real parameters of a fully connected neural network, 0.7 MB to store integer parameters without using the proposed methods, 0.47 MB in the RAM and 0.3 MB in compressed form on the disk when using the first method, and 0.25 MB on the disk when using the second method. In the experiment with the USPS data set, it took 0.25 MB to store real parameters of a fully connected neural network, 0.1 MB to store integer parameters without using the proposed methods, 0.05 MB in the RAM and approximately the same amount in compressed form on the disk when using the first method, and 0.03 MB on the disk when using the second method. The study results can be applied in using fully connected neural networks to solve various recognition problems under the conditions of limited hardware capacities.


Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 52
Author(s):  
Richard Evan Sutanto ◽  
Sukho Lee

Several recent studies have shown that artificial intelligence (AI) systems can malfunction due to intentionally manipulated data coming through normal channels. Such kinds of manipulated data are called adversarial examples. Adversarial examples can pose a major threat to an AI-led society when an attacker uses them as means to attack an AI system, which is called an adversarial attack. Therefore, major IT companies such as Google are now studying ways to build AI systems which are robust against adversarial attacks by developing effective defense methods. However, one of the reasons why it is difficult to establish an effective defense system is due to the fact that it is difficult to know in advance what kind of adversarial attack method the opponent is using. Therefore, in this paper, we propose a method to detect the adversarial noise without knowledge of the kind of adversarial noise used by the attacker. For this end, we propose a blurring network that is trained only with normal images and also use it as an initial condition of the Deep Image Prior (DIP) network. This is in contrast to other neural network based detection methods, which require the use of many adversarial noisy images for the training of the neural network. Experimental results indicate the validity of the proposed method.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Brett H. Hokr ◽  
Joel N. Bixler

AbstractDynamic, in vivo measurement of the optical properties of biological tissues is still an elusive and critically important problem. Here we develop a technique for inverting a Monte Carlo simulation to extract tissue optical properties from the statistical moments of the spatio-temporal response of the tissue by training a 5-layer fully connected neural network. We demonstrate the accuracy of the method across a very wide parameter space on a single homogeneous layer tissue model and demonstrate that the method is insensitive to parameter selection of the neural network model itself. Finally, we propose an experimental setup capable of measuring the required information in real time in an in vivo environment and demonstrate proof-of-concept level experimental results.


2014 ◽  
Vol 490-491 ◽  
pp. 1588-1591
Author(s):  
Liang Zhang ◽  
Hao Yue Sun ◽  
Guo Lv ◽  
Xiao Lu Sun

In this paper, the intelligentized way is applied to detecting anomaly intrusion. Based on the global property of genetic algorithm and the locality of neural network, this method effectively improves the convergence speed of the network and the detection accuracy rate. It not only avoids the defect of the neural network, but also improves the precision.


Author(s):  
Daniel Roten ◽  
Kim B. Olsen

ABSTRACT We use deep learning to predict surface-to-borehole Fourier amplification functions (AFs) from discretized shear-wave velocity profiles. Specifically, we train a fully connected neural network and a convolutional neural network using mean AFs observed at ∼600 KiK-net vertical array sites. Compared with predictions based on theoretical SH 1D amplifications, the neural network (NN) results in up to 50% reduction of the mean squared log error between predictions and observations at sites not used for training. In the future, NNs may lead to a purely data-driven prediction of site response that is independent of proxies or simplifying assumptions.


Author(s):  
Komsan Wongkalasin ◽  
Teerapon Upachaban ◽  
Wacharawish Daosawang ◽  
Nattadon Pannucharoenwong ◽  
Phadungsak Ratanadecho

This research aims to enhance the watermelon’s quality selection process, which was traditionally conducted by knocking the watermelon fruit and sort out by the sound’s character. The proposed method in this research is generating the sound spectrum through the watermelon and then analyzes the response signal’s frequency and the amplitude by Fast Fourier Transform (FFT). Then the obtained data were used to train and verify the neural network processor. The result shows that, the frequencies of 129 and 172 Hz were suit to be used in the comparison. Thirty watermelons, which were randomly selected from the orchard, were used to create a data set, and then were cut to manually check and match to the fruits’ quality. The 129 Hz frequency gave the response ranging from 13.57 and above in 3 groups of watermelons quality, including, not fully ripened, fully ripened, and close to rotten watermelons. When the 172 Hz gave the response between 11.11–12.72 in not fully ripened watermelons and those of 13.00 or more in the group of close to rotten and hollow watermelons. The response was then used as a training condition for the artificial neural network processor of the sorting machine prototype. The verification results provided a reasonable prediction of the ripeness level of watermelon and can be used as a pilot prototype to improve the efficiency of the tools to obtain a modern-watermelon quality selection tool, which could enhance the competitiveness of the local farmers on the product quality control.


2005 ◽  
Vol 488-489 ◽  
pp. 793-796 ◽  
Author(s):  
Hai Ding Liu ◽  
Ai Tao Tang ◽  
Fu Sheng Pan ◽  
Ru Lin Zuo ◽  
Ling Yun Wang

A model was developed for the analysis and prediction of correlation between composition and mechanical properties of Mg-Al-Zn (AZ) magnesium alloys by applying artificial neural network (ANN). The input parameters of the neural network (NN) are alloy composition. The outputs of the NN model are important mechanical properties, including ultimate tensile strength, tensile yield strength and elongation. The model is based on multilayer feedforward neural network. The NN was trained with comprehensive data set collected from domestic and foreign literature. A very good performance of the neural network was achieved. The model can be used for the simulation and prediction of mechanical properties of AZ system magnesium alloys as functions of composition.


Sign in / Sign up

Export Citation Format

Share Document