scholarly journals County-Level Soybean Yield Prediction Using Deep CNN-LSTM Model

Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4363 ◽  
Author(s):  
Jie Sun ◽  
Liping Di ◽  
Ziheng Sun ◽  
Yonglin Shen ◽  
Zulong Lai

Yield prediction is of great significance for yield mapping, crop market planning, crop insurance, and harvest management. Remote sensing is becoming increasingly important in crop yield prediction. Based on remote sensing data, great progress has been made in this field by using machine learning, especially the Deep Learning (DL) method, including Convolutional Neural Network (CNN) or Long Short-Term Memory (LSTM). Recent experiments in this area suggested that CNN can explore more spatial features and LSTM has the ability to reveal phenological characteristics, which both play an important role in crop yield prediction. However, very few experiments combining these two models for crop yield prediction have been reported. In this paper, we propose a deep CNN-LSTM model for both end-of-season and in-season soybean yield prediction in CONUS at the county-level. The model was trained by crop growth variables and environment variables, which include weather data, MODIS Land Surface Temperature (LST) data, and MODIS Surface Reflectance (SR) data; historical soybean yield data were employed as labels. Based on the Google Earth Engine (GEE), all these training data were combined and transformed into histogram-based tensors for deep learning. The results of the experiment indicate that the prediction performance of the proposed CNN-LSTM model can outperform the pure CNN or LSTM model in both end-of-season and in-season. The proposed method shows great potential in improving the accuracy of yield prediction for other crops like corn, wheat, and potatoes at fine scales in the future.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Javad Ansarifar ◽  
Lizhi Wang ◽  
Sotirios V. Archontoulis

AbstractCrop yield prediction is crucial for global food security yet notoriously challenging due to multitudinous factors that jointly determine the yield, including genotype, environment, management, and their complex interactions. Integrating the power of optimization, machine learning, and agronomic insight, we present a new predictive model (referred to as the interaction regression model) for crop yield prediction, which has three salient properties. First, it achieved a relative root mean square error of 8% or less in three Midwest states (Illinois, Indiana, and Iowa) in the US for both corn and soybean yield prediction, outperforming state-of-the-art machine learning algorithms. Second, it identified about a dozen environment by management interactions for corn and soybean yield, some of which are consistent with conventional agronomic knowledge whereas some others interactions require additional analysis or experiment to prove or disprove. Third, it quantitatively dissected crop yield into contributions from weather, soil, management, and their interactions, allowing agronomists to pinpoint the factors that favorably or unfavorably affect the yield of a given location under a given weather and management scenario. The most significant contribution of the new prediction model is its capability to produce accurate prediction and explainable insights simultaneously. This was achieved by training the algorithm to select features and interactions that are spatially and temporally robust to balance prediction accuracy for the training data and generalizability to the test data.


2020 ◽  
Vol 284 ◽  
pp. 107886 ◽  
Author(s):  
Raí A. Schwalbert ◽  
Telmo Amado ◽  
Geomar Corassa ◽  
Luan Pierre Pott ◽  
P.V.Vara Prasad ◽  
...  

2019 ◽  
Vol 12 (1) ◽  
pp. 21 ◽  
Author(s):  
Liangliang Zhang ◽  
Zhao Zhang ◽  
Yuchuan Luo ◽  
Juan Cao ◽  
Fulu Tao

Maize is an extremely important grain crop, and the demand has increased sharply throughout the world. China contributes nearly one-fifth of the total production alone with its decreasing arable land. Timely and accurate prediction of maize yield in China is critical for ensuring global food security. Previous studies primarily used either visible or near-infrared (NIR) based vegetation indices (VIs), or climate data, or both to predict crop yield. However, other satellite data from different spectral bands have been underutilized, which contain unique information on crop growth and yield. In addition, although a joint application of multi-source data significantly improves crop yield prediction, the combinations of input variables that could achieve the best results have not been well investigated. Here we integrated optical, fluorescence, thermal satellite, and environmental data to predict county-level maize yield across four agro-ecological zones (AEZs) in China using a regression-based method (LASSO), two machine learning (ML) methods (RF and XGBoost), and deep learning (DL) network (LSTM). The results showed that combining multi-source data explained more than 75% of yield variation. Satellite data at the silking stage contributed more information than other variables, and solar-induced chlorophyll fluorescence (SIF) had an almost equivalent performance with the enhanced vegetation index (EVI) largely due to the low signal to noise ratio and coarse spatial resolution. The extremely high temperature and vapor pressure deficit during the reproductive period were the most important climate variables affecting maize production in China. Soil properties and management factors contained extra information on crop growth conditions that cannot be fully captured by satellite and climate data. We found that ML and DL approaches definitely outperformed regression-based methods, and ML had more computational efficiency and easier generalizations relative to DL. Our study is an important effort to combine multi-source remote sensed and environmental data for large-scale yield prediction. The proposed methodology provides a paradigm for other crop yield predictions and in other regions.


2020 ◽  
Vol 12 (7) ◽  
pp. 1092
Author(s):  
David Browne ◽  
Michael Giering ◽  
Steven Prestwich

Scene classification is an important aspect of image/video understanding and segmentation. However, remote-sensing scene classification is a challenging image recognition task, partly due to the limited training data, which causes deep-learning Convolutional Neural Networks (CNNs) to overfit. Another difficulty is that images often have very different scales and orientation (viewing angle). Yet another is that the resulting networks may be very large, again making them prone to overfitting and unsuitable for deployment on memory- and energy-limited devices. We propose an efficient deep-learning approach to tackle these problems. We use transfer learning to compensate for the lack of data, and data augmentation to tackle varying scale and orientation. To reduce network size, we use a novel unsupervised learning approach based on k-means clustering, applied to all parts of the network: most network reduction methods use computationally expensive supervised learning methods, and apply only to the convolutional or fully connected layers, but not both. In experiments, we set new standards in classification accuracy on four remote-sensing and two scene-recognition image datasets.


Author(s):  
Richa Verma & Ayushi

Precise assessment of harvest yield is a difficult field of work. The equipment and programming stage to foresee the harvest yield relies on different components like climate, soil fruitfulness, genotype, and different collaborating wards. The assignment is unpredictable inferable from the information that should be gathered in volumes to comprehend crop yield through remote sensor organizations and distant detecting. This paper audits the previous 15 years of exploration work in the improvement of assessing crop yield utilizing profound learning calculations. The meaning of examining progressions utilizing profound learning methods will help in dynamic for foreseeing the harvest yield. The cross breed mix of profound learning with distant detecting and remote sensor organizations can give accuracy agribusiness later on.


2021 ◽  
Author(s):  
Amit Kumar Srivast ◽  
Nima Safaei ◽  
Saeed Khaki ◽  
Gina Lopez ◽  
Wenzhi Zeng ◽  
...  

Abstract Crop yield forecasting depends on many interactive factors including crop genotype, weather, soil, and management practices. This study analyzes the performance of machine learning and deep learning methods for winter wheat yield prediction using extensive datasets of weather, soil, and crop phenology. We propose a convolutional neural network (CNN) which uses the 1-dimentional convolution operation to capture the time dependencies of environmental variables. The proposed CNN, evaluated along with other machine learning models for winter wheat yield prediction in Germany, outperformed all other models tested. To address the seasonality, weekly features were used that explicitly take soil moisture and meteorological events into account. Our results indicated that nonlinear models such as deep learning models and XGboost are more effective in finding the functional relationship between the crop yield and input data compared to linear models and deep neural networks had a higher prediction accuracy than XGboost. One of the main limitations of machine learning models is their black box property. Therefore, we moved beyond prediction and performed feature selection, as it provides key results towards explaining yield prediction (variable importance by time). As such, our study indicates which variables have the most significant effect on winter wheat yield.


2022 ◽  
Vol 12 ◽  
Author(s):  
Wei Lu ◽  
Rongting Du ◽  
Pengshuai Niu ◽  
Guangnan Xing ◽  
Hui Luo ◽  
...  

Soybean yield is a highly complex trait determined by multiple factors such as genotype, environment, and their interactions. The earlier the prediction during the growing season the better. Accurate soybean yield prediction is important for germplasm innovation and planting environment factor improvement. But until now, soybean yield has been determined by weight measurement manually after soybean plant harvest which is time-consuming, has high cost and low precision. This paper proposed a soybean yield in-field prediction method based on bean pods and leaves image recognition using a deep learning algorithm combined with a generalized regression neural network (GRNN). A faster region-convolutional neural network (Faster R-CNN), feature pyramid network (FPN), single shot multibox detector (SSD), and You Only Look Once (YOLOv3) were employed for bean pods recognition in which recognition precision and speed were 86.2, 89.8, 80.1, 87.4%, and 13 frames per second (FPS), 7 FPS, 24 FPS, and 39 FPS, respectively. Therefore, YOLOv3 was selected considering both recognition precision and speed. For enhancing detection performance, YOLOv3 was improved by changing IoU loss function, using the anchor frame clustering algorithm, and utilizing the partial neural network structure with which recognition precision increased to 90.3%. In order to improve soybean yield prediction precision, leaves were identified and counted, moreover, pods were further classified as single, double, treble, four, and five seeds types by improved YOLOv3 because each type seed weight varies. In addition, soybean seed number prediction models of each soybean planter were built using PLSR, BP, and GRNN with the input of different type pod numbers and leaf numbers with which prediction results were 96.24, 96.97, and 97.5%, respectively. Finally, the soybean yield of each planter was obtained by accumulating the weight of all soybean pod types and the average accuracy was up to 97.43%. The results show that it is feasible to predict the soybean yield of plants in situ with high precision by fusing the number of leaves and different type soybean pods recognized by a deep neural network combined with GRNN which can speed up germplasm innovation and planting environmental factor optimization.


Sign in / Sign up

Export Citation Format

Share Document