scholarly journals Research on Method of Farmland Obstacle Boundary Extraction in UAV Remote Sensing Images

Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4431
Author(s):  
Fang ◽  
Chen ◽  
Jiang ◽  
Wang ◽  
Liu ◽  
...  

Aimed at the problem of obstacle detection in farmland, the research proposed to adopt the method of farmland information acquisition based on unmanned aerial vehicle landmark image, and improved the method of extracting obstacle boundary based on standard correlation coefficient template matching and assessed the influence of different image resolutions on the precision of obstacle extraction. Analyzing the RGB image of farmland acquired by unmanned aerial vehicle remote sensing technology, this research got the following results. Firstly, we applied a method automatically registering coordinates, and the average deviations on the X and Y direction were 4.6 cm and 12.0 cm respectively, while the average deviations manually by ArcGIS were 4.6 cm and 5.7 cm. Secondly, with an improvement on the step of the traditional correlation coefficient template matching, we reduced the time of template matching from 12.2 s to 4.6 s. The average deviation between edge length of obstacles calculated by corner points extracted by the algorithm and that by actual measurement was 4.0 cm. Lastly, by compressing the original image on a different ratio, when the pixel reached 735 × 2174 (the image resolution reached 6 cm), the obstacle boundary was extracted based on correlation coefficient template matching, the average deviations of boundary points I of six obstacles on the X and Y were respectively 0.87 and 0.95 cm, and the whole process of detection took about 3.1 s. To sum up, it can be concluded that the algorithm of automatically registered coordinates and of automatically extracted obstacle boundary, which were designed in this research, can be applied to the establishment of a basic information collection system for navigation in future study. The best image pixel of obstacle boundary detection proposed after integrating the detection precision and detection time can be the theoretical basis for deciding the unmanned aerial vehicle remote sensing image resolution.

Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 327 ◽  
Author(s):  
Riccardo Dainelli ◽  
Piero Toscano ◽  
Salvatore Filippo Di Gennaro ◽  
Alessandro Matese

Natural, semi-natural, and planted forests are a key asset worldwide, providing a broad range of positive externalities. For sustainable forest planning and management, remote sensing (RS) platforms are rapidly going mainstream. In a framework where scientific production is growing exponentially, a systematic analysis of unmanned aerial vehicle (UAV)-based forestry research papers is of paramount importance to understand trends, overlaps and gaps. The present review is organized into two parts (Part I and Part II). Part II inspects specific technical issues regarding the application of UAV-RS in forestry, together with the pros and cons of different UAV solutions and activities where additional effort is needed, such as the technology transfer. Part I systematically analyzes and discusses general aspects of applying UAV in natural, semi-natural and artificial forestry ecosystems in the recent peer-reviewed literature (2018–mid-2020). The specific goals are threefold: (i) create a carefully selected bibliographic dataset that other researchers can draw on for their scientific works; (ii) analyze general and recent trends in RS forest monitoring (iii) reveal gaps in the general research framework where an additional activity is needed. Through double-step filtering of research items found in the Web of Science search engine, the study gathers and analyzes a comprehensive dataset (226 articles). Papers have been categorized into six main topics, and the relevant information has been subsequently extracted. The strong points emerging from this study concern the wide range of topics in the forestry sector and in particular the retrieval of tree inventory parameters often through Digital Aerial Photogrammetry (DAP), RGB sensors, and machine learning techniques. Nevertheless, challenges still exist regarding the promotion of UAV-RS in specific parts of the world, mostly in the tropical and equatorial forests. Much additional research is required for the full exploitation of hyperspectral sensors and for planning long-term monitoring.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4115 ◽  
Author(s):  
Yuxia Li ◽  
Bo Peng ◽  
Lei He ◽  
Kunlong Fan ◽  
Zhenxu Li ◽  
...  

Roads are vital components of infrastructure, the extraction of which has become a topic of significant interest in the field of remote sensing. Because deep learning has been a popular method in image processing and information extraction, researchers have paid more attention to extracting road using neural networks. This article proposes the improvement of neural networks to extract roads from Unmanned Aerial Vehicle (UAV) remote sensing images. D-Linknet was first considered for its high performance; however, the huge scale of the net reduced computational efficiency. With a focus on the low computational efficiency problem of the popular D-LinkNet, this article made some improvements: (1) Replace the initial block with a stem block. (2) Rebuild the entire network based on ResNet units with a new structure, allowing for the construction of an improved neural network D-Linknetplus. (3) Add a 1 × 1 convolution layer before DBlock to reduce the input feature maps, reducing parameters and improving computational efficiency. Add another 1 × 1 convolution layer after DBlock to recover the required number of output channels. Accordingly, another improved neural network B-D-LinknetPlus was built. Comparisons were performed between the neural nets, and the verification were made with the Massachusetts Roads Dataset. The results show improved neural networks are helpful in reducing the network size and developing the precision needed for road extraction.


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 397
Author(s):  
Riccardo Dainelli ◽  
Piero Toscano ◽  
Salvatore Filippo Di Gennaro ◽  
Alessandro Matese

Forest sustainable management aims to maintain the income of woody goods for companies, together with preserving non-productive functions as a benefit for the community. Due to the progress in platforms and sensors and the opening of the dedicated market, unmanned aerial vehicle–remote sensing (UAV–RS) is improving its key role in the forestry sector as a tool for sustainable management. The use of UAV (Unmanned Aerial Vehicle) in precision forestry has exponentially increased in recent years, as demonstrated by more than 600 references published from 2018 until mid-2020 that were found in the Web of Science database by searching for “UAV”+“forest”. This result is even more surprising when compared with similar research for “UAV”+“agriculture”, from which emerge about 470 references. This shows how UAV–RS research forestry is gaining increasing popularity. In Part II of this review, analyzing the main findings of the reviewed papers (227), numerous strengths emerge concerning research technical issues. UAV–RS is fully applicated for obtaining accurate information from practical parameters (height, diameter at breast height (DBH), and biomass). Research effectiveness and soundness demonstrate that UAV–RS is now ready to be applied in a real management context. Some critical issues and barriers in transferring research products are also evident, namely,(1) hyperspectral sensors are poorly used, and their novel applications should be based on the capability of acquiring tree spectral signature especially for pest and diseases detection, (2) automatic processes for image analysis are poorly flexible or based on proprietary software at the expense of flexible and open-source tools that can foster researcher activities and support technology transfer among all forestry stakeholders, and (3) a clear lack exist in sensors and platforms interoperability for large-scale applications and for enabling data interoperability.


2021 ◽  
Vol 13 (18) ◽  
pp. 3652
Author(s):  
Duo Xu ◽  
Yixin Zhao ◽  
Yaodong Jiang ◽  
Cun Zhang ◽  
Bo Sun ◽  
...  

Information on the ground fissures induced by coal mining is important to the safety of coal mine production and the management of environment in the mining area. In order to identify these fissures timely and accurately, a new method was proposed in the present paper, which is based on an unmanned aerial vehicle (UAV) equipped with a visible light camera and an infrared camera. According to such equipment, edge detection technology was used to detect mining-induced ground fissures. Field experiments show high efficiency of the UAV in monitoring the mining-induced ground fissures. Furthermore, a reasonable time period between 3:00 a.m. and 5:00 a.m. under the studied conditions helps UAV infrared remote sensing identify fissures preferably. The Roberts operator, Sobel operator, Prewitt operator, Canny operator and Laplacian operator were tested to detect the fissures in the visible image, infrared image and fused image. An improved edge detection method was proposed which based on the Laplacian of Gaussian, Canny and mathematical morphology operators. The peak signal-to-noise rate, effective edge rate, Pratt’s figure of merit and F-measure indicated that the proposed method was superior to the other methods. In addition, the fissures in infrared images at different times can be accurately detected by the proposed method except at 7:00 a.m., 1:00 p.m. and 3:00 p.m.


Sign in / Sign up

Export Citation Format

Share Document