scholarly journals A Low-Cost, Multi-Sensor System to Monitor Temporary Stream Dynamics in Mountainous Headwater Catchments

Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4645 ◽  
Author(s):  
Rick Assendelft ◽  
H. J. van Meerveld

While temporary streams account for more than half of the global discharge, high spatiotemporal resolution data on the three main hydrological states (dry streambed, standing water, and flowing water) of temporary stream remains sparse. This study presents a low-cost, multi-sensor system to monitor the hydrological state of temporary streams in mountainous headwaters. The monitoring system consists of an Arduino microcontroller board combined with an SD-card data logger shield, and four sensors: an electrical resistance (ER) sensor, temperature sensor, float switch sensor, and flow sensor. The monitoring system was tested in a small mountainous headwater catchment, where it was installed on multiple locations in the stream network, during two field seasons (2016 and 2017). Time-lapse cameras were installed at all monitoring system locations to evaluate the sensor performance. The field tests showed that the monitoring system was power efficient (running for nine months on four AA batteries at a five-minute logging interval) and able to reliably log data (<1% failed data logs). Of the sensors, the ER sensor (99.9% correct state data and 90.9% correctly timed state changes) and flow sensor (99.9% correct state data and 90.5% correctly timed state changes) performed best (2017 performance results). A setup of the monitoring system with these sensors can provide long-term, high spatiotemporal resolution data on the hydrological state of temporary streams, which will help to improve our understanding of the hydrological functioning of these important systems.


2020 ◽  
Author(s):  
Rick Assendelft ◽  
Ilja van Meerveld

&lt;p&gt;Temporary streams are common in headwater catchments and serve as important ecological and hydrological links between these catchments and downstream perennial rivers. However, our understanding of temporary streams in headwater catchments is limited due to a lack of high spatiotemporal resolution data of the three main hydrological states of these streams: dry streambed, standing water and flowing water. In this study, we used a custom designed multi-sensor monitoring system to collect high spatiotemporal resolution state data of the temporary streams in the 0.12 km&lt;sup&gt;2&lt;/sup&gt; upper Studibach catchment, a pre-alpine headwater catchment in Alptal, Switzerland. The monitoring system was installed at 30 locations in the stream network. The state data was used to determine: (1) the temporary stream regime for every monitoring location based on the permanence of each hydrological state, (2) the state change thresholds (antecedent soil moisture, precipitation amount and intensity, and discharge at the outlet) for every monitoring location, and (3) the state change patterns in the stream network during precipitation events. The temporary stream regimes, and the state change thresholds and patterns were compared to topographic, land cover and channel characteristics to determine if these factors can explain the variability in temporary stream dynamics. The results show that there are four different landscape areas with distinctive temporary stream dynamics in the catchment, and that a steep forested section with coarse streambed material often disconnects the flowing parts of the upper and lower stream network.&lt;/p&gt;



2020 ◽  
pp. 419-422
Author(s):  
Senthilkumar J ◽  
Saravanan K ◽  
Anandakumar P

In modern days vehicle’s stealing are easy because of simple way in vehicle’s running method. It credibly condensed by using a fingerprint-based process because approved person only can able to start the vehicle’s engine. Nowadays, these kinds of security systems are only available in luxury vehicles. In our proposed systems we developed low-cost bio-metric based verification for motorbikes. A fingerprint sensor kept on the motorbikes dashboard to read the fingerprint and the data are analyzed in the stored database in processor to identify the authorized person to start the vehicle engine. In this paper along with user authentication vehicle millage also calculated using Hall Effect and flow sensor.





2021 ◽  
Author(s):  
Andrew L. Ross ◽  
Victoria A. Natalie ◽  
James C. Brenner ◽  
Kyle T. Hickman ◽  
Jamey D. Jacob


Author(s):  
Ela Šegina ◽  
Mateja Jemec Auflič ◽  
Eugenio Realini ◽  
Ismael Colomina ◽  
Michele Crosetto ◽  
...  


Author(s):  
I Made Oka Widyantara ◽  
I Made Dwi Asana Putra ◽  
Ida Bagus Putu Adnyana

This paper intends to explain the development of Coastal Video Monitoring System (CoViMoS) with the main characteristics including low-cost and easy implementation. CoViMoS characteristics have been realized using the device IP camera for video image acquisition, and development of software applications with the main features including detection of shoreline and it changes are automatically. This capability was based on segmentation and classification techniques based on data mining. Detection of shoreline is done by segmenting a video image of the beach, to get a cluster of objects, namely land, sea and sky, using Self Organizing Map (SOM) algorithms. The mechanism of classification is done using K-Nearest Neighbor (K-NN) algorithms to provide the class labels to objects that have been generated on the segmentation process. Furthermore, the classification of land used as a reference object in the detection of costline. Implementation CoViMoS system for monitoring systems in Cucukan Beach, Gianyar regency, have shown that the developed system is able to detect the shoreline and its changes automatically.



2020 ◽  
pp. 1-1
Author(s):  
Abu Ilius Faisal ◽  
Sumit Majumder ◽  
Ryan Scott ◽  
Tapas Mondal ◽  
David Cowan ◽  
...  


Author(s):  
Nusrat Binta Nizam ◽  
Tohfatul Jinan ◽  
Wahida Binte Naz Aurthy ◽  
Md. Rakib Hossen ◽  
Jahid Ferdous


Landslides ◽  
2021 ◽  
Author(s):  
Lorenzo Brezzi ◽  
Alberto Bisson ◽  
Davide Pasa ◽  
Simonetta Cola

AbstractA large number of landslides occur in North-Eastern Italy during every rainy period due to the particular hydrogeological conditions of this area. Even if there are no casualties, the economic losses are often significant, and municipalities frequently do not have sufficient financial resources to repair the damage and stabilize all the unstable slopes. In this regard, the research for more economically sustainable solutions is a crucial challenge. Floating composite anchors are an innovative and low-cost technique set up for slope stabilization: it consists in the use of passive sub-horizontal reinforcements, obtained by coupling a traditional self-drilling bar with some tendons cemented inside it. This work concerns the application of this technique according to the observational method described within the Italian and European technical codes and mainly recommended for the design of geotechnical works, especially when performed in highly uncertain site conditions. The observational method prescribes designing an intervention and, at the same time, using a monitoring system in order to correct and adapt the project during realization of the works on the basis of new data acquired while on site. The case study is the landslide of Cischele, a medium landslide which occurred in 2010 after an exceptional heavy rainy period. In 2015, some floating composite anchors were installed to slow down the movement, even if, due to a limited budget, they were not enough to ensure the complete stabilization of the slope. Thanks to a monitoring system installed in the meantime, it is now possible to have a comparison between the site conditions before and after the intervention. This allows the evaluation of benefits achieved with the reinforcements and, at the same time, the assessment of additional improvements. Two stabilization scenarios are studied through an FE model: the first includes the stabilization system built in 2015, while the second evaluates a new solution proposed to further increase the slope stability.



Sign in / Sign up

Export Citation Format

Share Document