scholarly journals Research on Key Techniques of Insect Flapping Onset Control Based on Electrical Stimulation

Sensors ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 239
Author(s):  
Feng ◽  
Yang ◽  
Jiang ◽  
Zheng

In this paper, an insect flapping onset control method based on electrical stimulation is proposed. The beetle (Allomyrina dithotomus, Coleoptera) is employed for the research carrier, and it’s left and right longitudinal muscles are electrically stimulated to control the flapping onset behavior. The control principle of insect flapping onset utilizing electrical stimulation is analyzed firstly followed by the movement function of the dorsal longitudinal muscle. Subsequently, a micro-control system, which is composed of a PC controller, coordinator and electronic backpack, is designed to realize the wireless control of beetle movements. Finally, the verification experiment is implemented to verify the effectiveness of dorsal longitudinal muscle stimulation with respect to the beetle flapping onset, whereas the comparative experiment emphasizes on determining optimal simulating parameters. The experimental results demonstrate that when the period, duty ratio, number of and amplitude of pulses stimulation signal are assigned to 5 ms, 20%, 90 and 3.3 V respectively, the beetle flapping onset can be controlled with an average response time of 1.69 s. Simultaneously, the optimization of duty ratio from 20% to 40%, and the number of pulses from 90 to 100, is proved to the best parameter configuration.

2014 ◽  
Vol 989-994 ◽  
pp. 3105-3109
Author(s):  
Xiao Bo Liu ◽  
Xiao Feng Wei ◽  
Xiao Dong Yuan ◽  
Wei Ni

This paper deals with the design and theoretical analysis on a novel vertical lift machine which can vertically lift above 700 kg load up to 3.2 meters above the floor and located the load with high accuracy of position and orientation. Firstly the design model based on the installment demands of line-replaceable units (LRUs) is constructed. Then theoretical analysis including the number of degree of freedom of the lift machine, the inverse kinematic, the control principle, the lift platform pose error and the precise pose control method are conducted in the article. The validity of the design model and the effectiveness of the precise pose control system are confirmed by experiments using a prototype lift machine.


1925 ◽  
Vol s2-69 (275) ◽  
pp. 385-398
Author(s):  
L. EASTHAM

1. The proximal regions of the Malpighian tubules of Drosopbila funebris and Calliphora erythro cephala are supplied with systems of circular and longitudinal muscles external to the basement membrane. 2. These muscles are continuous with those of the mid-gut. 3. There is a terminal muscle to each anterior tubule in Drosophila funebris connected to the alar muscles of the pericardial septum. 4. Peristalsis has been observed in the proximal regions of the tubules, caused by the circular muscles. 5. The tubules exhibit a waving movement, probably due to the longitudinal muscle-bands of the lower or proximal ends of the tubules. 6. Calcium carbonate is stored in the terminal portions of the anterior tubules of Drosophila funebris. 7. This calcium carbonate is not eliminated at the beginning of metamorphosis, but is passed to the gut about the sixth day of pupal life, and is only expelled from the body on the emergence of the adult. 8. Calcium carbonate is found in the Malpighian tubules of the adult Drosophila funebris.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4268
Author(s):  
Benoît Sijobert ◽  
Ronan Le Guillou ◽  
Charles Fattal ◽  
Christine Azevedo Coste

This article introduces a novel approach for a functional electrical stimulation (FES) controller intended for FES-induced cycling based on inertial measurement units (IMUs). This study aims at simplifying the design of electrical stimulation timing patterns while providing a method that can be adapted to different users and devices. In most of studies and commercial devices, the crank angle is used as an input to trigger stimulation onset. We propose instead to use thigh inclination as the reference information to build stimulation timing patterns. The tilting angles of both thighs are estimated from one inertial sensor located above each knee. An IF–THEN rule algorithm detects, online and automatically, the thigh peak angles in order to start and stop the stimulation of quadriceps muscles, depending on these events. One participant with complete paraplegia was included and was able to propel a recumbent trike using the proposed approach after a very short setting time. This new modality opens the way for a simpler and user-friendly method to automatically design FES-induced cycling stimulation patterns, adapted to clinical use, for multiple bike geometries and user morphologies.


1989 ◽  
Vol 257 (4) ◽  
pp. G532-G538 ◽  
Author(s):  
T. Takeda ◽  
K. Taniyama ◽  
S. Baba ◽  
C. Tanaka

The mechanism of action of somatostatin on the motility of intestine was examined in the entire preparation and the longitudinal muscle attached with Auerbach's plexus (LA) preparation of guinea pig ileum, in relation to the cholinergic neuron and gamma-aminobutyric acid (GABA)ergic neuron. Somatostatin produced a transient potentiation of electrical stimulation-induced twitch contractions followed by an inhibition. The excitatory effect of somatostatin was associated with an increase in the release of [3H]acetylcholine (ACh) from the preparations preloaded with [3H]choline. Bicuculline, a GABAA antagonist, inhibited the somatostatin-induced excitatory effect. Somatostatin inhibited the electrical stimulation-induced twitch contraction and release of [3H]ACh, and the inhibition was greater in the entire preparation than in the LA. Phaclofen, a GABAB antagonist, prevented the inhibitory effects of somatostatin. Somatostatin induced a Ca2+ -dependent, tetrodotoxin-sensitive release of [3H]GABA from the preparations preloaded with [3H]GABA. Therefore somatostatin exerts excitatory and inhibitory effects on the cholinergic neuron due to the stimulation of the GABAergic neuron, and the motility of the intestine is regulated.


2019 ◽  
Vol 9 (21) ◽  
pp. 4499 ◽  
Author(s):  
Zhu ◽  
Peng ◽  
Yang

Micro actuators have been used to realize the arrival of digestive tract lesions for the local targeted application of drugs in endoscopes. However, there still exists a key safety issue that casts a shadow over the practical and safe implementation of actuators in the human body, namely an overheated environment caused by actuators’ operation. Herein, with the aim of solving the temperature rising problem of a piezoelectric micro actuator operating in an endoscopic biopsy channel (OLYMPUS, Tokyo, Japan), a thermal finite element method (FEM) based on COMSOL Multiphysics software is proposed. The temperature distribution and its rising curves are obtained by the FEM method. Both the simulated and experimental maximum temperatures are larger than the safety value (e.g., 42 °C for human tissues) when the driving voltage of the actuator is 200 Vpp, which proves that the overheating problem really exists in the actuator. Furthermore, the results show that the calculated temperature rising curves correspond to the experimental results, proving the effectiveness of this FEM method. Therefore, we introduce a temperature control method through optimizing the duty ratio of the actuator. In comparison with a 100% duty ratio operation condition, it is found that a 60% duty ratio with a driving voltage of 200 Vpp can more effectively prevent the temperature rising issue in the first 3 min, as revealed by the corresponding temperatures of 44.4 and 41.4 °C, respectively. When the duty ratio is adjusted to 30% or less, the temperature rise of the actuator can be significantly reduced to only 36.6 °C, which is close to the initial temperature (36.4 °C). Meanwhile, the speed of the actuator can be well-maintained at a certain level, demonstrating its great applicability for safe operation in the human body.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2223 ◽  
Author(s):  
Haifeng Liang ◽  
Yue Dong ◽  
Yuxi Huang ◽  
Can Zheng ◽  
Peng Li

The stable operation of a microgrid is crucial to the integration of renewable energy sources. However, with the expansion of scale in electronic devices applied in the microgrid, the interaction between voltage source converters poses a great threat to system stability. In this paper, the model of a three-source microgrid with a multi master–slave control method in islanded mode is built first of all. Two sources out of three use droop control as the main control source, and another is a subordinate one with constant power control which is also known as real and reactive power (PQ) control. Then, the small signal decoupling control model and its stability discriminant equation are established combined with “virtual impedance”. To delve deeper into the interaction between converters, mutual influence of paralleled converters of two main control micro sources and their effect on system stability is explored from the perspective of control parameters. Finally, simulation and analysis are launched and the study serves as a reference for parameter setting of converters in a microgrid.


1978 ◽  
Vol 235 (4) ◽  
pp. E345
Author(s):  
S Yokoyama ◽  
T Ozaki

The effects of repetitive electrical stimulation of nodes in Auerbach's plexus on the longitudinal muscle of rabbit intestine were investigated. Peeled longitudinal muscle strips, with adherent Auerbach's plexus, were obtained and placed under a stereodissecting microscope. Neural elements within nodes of Auerbach's plexus were stimulated repetitively using a metal microelectrode with tip diameter of 5 micrometer. Stimuli applied to a node generally caused excitation of the longitudinal muscle on the oral side and inhibition on the anal side of the point of stimulation. Excitation of the muscle was mainly cholinergic, and inhibition of the muscle was nonadrenergic. From the results of the present study the concept of the law of the intestine, excitation above and inhibition below the stimulated spot, was supported.


2005 ◽  
Vol 17 (01) ◽  
pp. 19-26 ◽  
Author(s):  
CHENG-LIANG LIU ◽  
CHUNG-HUANG YU ◽  
SHIH-CHING CHEN ◽  
CHANG-HUNG CHEN

Functional electrical stimulation (FES) is a method for restoring the functional movements of paraplegic or patients with spinal cord injuries. However, the selection of parameters that control the restoration of standing up and sitting functions has not been extensively investigated. This work provides a method for choosing the four main items involved in evaluating the strategies for sit-stand-sit movements with the aid of a modified walker. The control method uses the arm-supported force and the angles of the legs as feedback signals to change the intensity of the electrical stimulation of the leg muscles. The control parameters, Ki and Kp, are vary for different control strategies. Four items are collected through questionnaires and used for evaluation. They are the maximum reactions of the two hands, the average reaction of the two hands, largest absolute angular velocity of the knee joints, and the sit-stand-sit duration time. The experimental data are normalized to facilitate comparison. Weighting factors are obtained and analyzed from questionnaires answered by experts and are added to evaluation process for manipulation. The results show that the best strategy is the closed-loop control with parameters Ki=0.5 and Kp=0.


Sign in / Sign up

Export Citation Format

Share Document