scholarly journals Surface Potential/Charge Sensing Techniques and Applications

Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1690
Author(s):  
Songyue Chen ◽  
Hepeng Dong ◽  
Jing Yang

Surface potential and surface charge sensing techniques have attracted a wide range of research interest in recent decades. With the development and optimization of detection technologies, especially nanosensors, new mechanisms and techniques are emerging. This review discusses various surface potential sensing techniques, including Kelvin probe force microscopy and chemical field-effect transistor sensors for surface potential sensing, nanopore sensors for surface charge sensing, zeta potentiometer and optical detection technologies for zeta potential detection, for applications in material property, metal ion and molecule studies. The mechanisms and optimization methods for each method are discussed and summarized, with the aim of providing a comprehensive overview of different techniques and experimental guidance for applications in surface potential-based detection.

2020 ◽  
Vol 11 ◽  
pp. 911-921
Author(s):  
Christian Ritz ◽  
Tino Wagner ◽  
Andreas Stemmer

Kelvin probe force microscopy is a scanning probe technique used to quantify the local electrostatic potential of a surface. In common implementations, the bias voltage between the tip and the sample is modulated. The resulting electrostatic force or force gradient is detected via lock-in techniques and canceled by adjusting the dc component of the tip–sample bias. This allows for an electrostatic characterization and simultaneously minimizes the electrostatic influence onto the topography measurement. However, a static contribution due to the bias modulation itself remains uncompensated, which can induce topographic height errors. Here, we demonstrate an alternative approach to find the surface potential without lock-in detection. Our method operates directly on the frequency-shift signal measured in frequency-modulated atomic force microscopy and continuously estimates the electrostatic influence due to the applied voltage modulation. This results in a continuous measurement of the local surface potential, the capacitance gradient, and the frequency shift induced by surface topography. In contrast to conventional techniques, the detection of the topography-induced frequency shift enables the compensation of all electrostatic influences, including the component arising from the bias modulation. This constitutes an important improvement over conventional techniques and paves the way for more reliable and accurate measurements of electrostatics and topography.


AIP Advances ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 085010
Author(s):  
Tomonori Nakamura ◽  
Nobuyuki Ishida ◽  
Keisuke Sagisaka ◽  
Yasuo Koide

Sign in / Sign up

Export Citation Format

Share Document