scholarly journals Validation of a Device to Measure Knee Joint Angles for a Dynamic Movement

Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1747 ◽  
Author(s):  
Mirel Ajdaroski ◽  
Ruchika Tadakala ◽  
Lorraine Nichols ◽  
Amanda Esquivel

Participation in sports has risen in the United States over the last few years, increasing the risk of injuries such as tears to the anterior cruciate ligament (ACL) in the knee. Previous studies have shown a correlation between knee kinematics when landing from a jump and this injury. The purpose of this study was to validate the ability of a commercially available inertial measurement units (IMUs) to accurately measure knee joint angles during a dynamic movement. Eight healthy subjects participated in the study. Validation was performed by comparing the angles measured by the wearable device to those obtained through the gold standard motion capture system when landing from a jump. Root mean square, linear regression analysis, and Bland–Altman plots were performed/constructed. The mean difference between the wearable device and the motion capture data was 8.4° (flexion/extension), 4.9° (ab/adduction), and 3.9° (rotation). In addition, the device was more accurate at smaller knee angles. In our study, a commercially available wearable IMU was able to perform fairly well under certain conditions and was less accurate in other conditions.

2018 ◽  
Vol 63 (6) ◽  
pp. 709-717 ◽  
Author(s):  
Christian H. Heinrichs ◽  
Dominik Knierzinger ◽  
Hannes Stofferin ◽  
Werner Schmoelz

AbstractA novel biomechanical test bench has been developed for in-vitro evaluation of the knee joint. The test bench allows the kinematics of the knee joint to be studied in all six degrees of freedom. Flexion-extension knee movements are induced by quadriceps and hamstring muscle forces simulated by five pneumatic cylinders. The kinematics of the knee and the actively applied muscle forces are measured simultaneously. The aim of this study was to validate the sensitivity and reproducibility of this novel test bench. Four fresh frozen human knees were tested three times, each with seven flexion-extension cycles between 5° and 60°. After the native knees had been tested, the posterior cruciate ligament and then the lateral collateral ligament were dissected. The injured knees were tested in identical conditions [3×(7×5°–60°)] in order to evaluate whether the test bench is capable of detecting differences in knee kinematics between a native state and an injured one. With regard to reproducibility, the novel test bench showed almost perfect agreement for each specimen and for all states and flexion angles. In comparison with the native knees, the injured knees showed significant differences in knee kinematics. This validated novel test bench will make it possible to investigate various knee pathologies, as well as current and newly developed treatment options.


2021 ◽  
Vol 11 (5) ◽  
pp. 2356
Author(s):  
Carlo Albino Frigo ◽  
Lucia Donno

A musculoskeletal model was developed to analyze the tensions of the knee joint ligaments during walking and to understand how they change with changes in the muscle forces. The model included the femur, tibia, patella and all components of cruciate and collateral ligaments, quadriceps, hamstrings and gastrocnemius muscles. Inputs to the model were the muscle forces, estimated by a static optimization approach, the external loads (ground reaction forces and moments) and the knee flexion/extension movement corresponding to natural walking. The remaining rotational and translational movements were obtained as a result of the dynamic equilibrium of forces. The validation of the model was done by comparing our results with literature data. Several simulations were carried out by sequentially removing the forces of the different muscle groups. Deactivation of the quadriceps produced a decrease of tension in the anterior cruciate ligament (ACL) and an increase in the posterior cruciate ligament (PCL). By removing the hamstrings, the tension of ACL increased at the late swing phase, while the PCL force dropped to zero. Specific effects were observed also at the medial and lateral collateral ligaments. The removal of gastrocnemius muscles produced an increase of tension only on PCL and lateral collateral ligaments. These results demonstrate how musculoskeletal models can contribute to knowledge about complex biomechanical systems as the knee joint.


2017 ◽  
Vol 17 (06) ◽  
pp. 1750092
Author(s):  
MARYAM HAJIZADEH ◽  
ALIREZA HASHEMI OSKOUEI ◽  
FARZAN GHALICHI ◽  
GISELA SOLE

Analysis of knee kinematics and ground reaction forces (GRFs) is widely used to determine compensatory mechanisms of people with anterior cruciate ligament deficiency (ACLD). However, the practicality of the measurements is subject to their reliability during different trials. This study aims to determine the reliability and repeatability of knee joint rotations and GRFs in people with ACLD during stair ascent. Eight participants with unilateral ACL-deficient knees performed five trials of stair ascent with each leg. The movements were captured by VICON motion analysis system, and GRF components were recorded using force plate. Three-dimensional tibiofemoral joint rotations were calculated. Intraclass correlation coefficient (ICC), standard error of measurement (SEM) and coefficient of multiple correlation (CMC) were calculated ACL-deficient legs showed lower absolute reliability during swing ([Formula: see text]–6.4) than stance phase ([Formula: see text]–2.2) for knee joint rotations. Moderate to high average measure ICCs (0.59–0.98), relative reliability, were achieved for injured and uninjured sides. The results also demonstrated high repeatability for the knee joint rotation ([Formula: see text]–0.97) and GRF ([Formula: see text]–0.99). The outcomes of this study confirmed the consistency and repeatability of the knee joint rotations and GRFs in ACL-deficient subjects. Additionally, ACL-deficient legs exhibited similar levels of reliability and repeatability compared to contralateral legs.


2021 ◽  
Author(s):  
Martin Huber ◽  
Matthew Eschbach ◽  
Kazem Kazerounian ◽  
Horea T. Ilies

Abstract Knee osteoarthritis (OA) is a disease that compromises the cartilage inside the knee joint, resulting in pain and impaired mobility. Bracing is a common treatment, however currently prescribed braces cannot treat bicompartmental knee OA, fail to consider the muscle weakness that typically accompanies the disease, and utilize hinges that restrict the knee's natural biomechanics. We have developed and evaluated a brace which addresses these shortcomings. This process has respected three principal design goals: reducing the load experienced across the entire knee joint, generating a supportive moment to aid the muscles in shock absorption, and interfering minimally with gait kinematics. Load reduction is achieved via the compression of medial and lateral leaf springs, and magnetorheological dampers provide the supportive moment during knee loading. A novel, personalized joint mechanism replaces a traditional hinge to reduce interference with knee kinematics. Using motion capture gait analysis, we evaluated the basic functionality of a prototype device. We calculated, via inverse dynamics analysis, the reaction forces at the knee joint and the moments generated by the leg muscles during gait. Comparing these values between braced and unbraced trials allowed us to evaluate the system's effectiveness. Kinematic measurements showed the extent to which the brace interfered with natural gait characteristics. Of the three design goals: a reduction in knee contact forces was demonstrated; increased shock absorption was observed, but not to statistical significance; and natural gait was largely preserved. The techniques presented in this paper could lead to improved OA treatment through patient-specific braces.


Author(s):  
Raman Garimella ◽  
Koen Beyers ◽  
Thomas Peeters ◽  
Stijn Verwulgen ◽  
Seppe Sels ◽  
...  

Abstract Aerodynamic drag force can account for up to 90% of the opposing force experienced by a cyclist. Therefore, aerodynamic testing and efficiency is a priority in cycling. An inexpensive method to optimize performance is required. In this study, we evaluate a novel indoor setup as a tool for aerodynamic pose training. The setup consists of a bike, indoor home trainer, camera, and wearable inertial motion sensors. A camera calculates frontal area of the cyclist and the trainer varies resistance to the cyclist by using this as an input. To guide a cyclist to assume an optimal pose, joint angles of the body are an objective metric. To track joint angles, two methods were evaluated: optical (RGB camera for the two-dimensional angles in sagittal plane of 6 joints), and inertial sensors (wearable sensors for three-dimensional angles of 13 joints). One (1) male amateur cyclist was instructed to recreate certain static and dynamic poses on the bike. The inertial sensors provide excellent results (absolute error = 0.28°) for knee joint. Based on linear regression analysis, frontal area can be best predicted (correlation > 0.4) by chest anterior/posterior tilt, pelvis left/right rotation, neck flexion/extension, chest left/right rotation, and chest left/right lateral tilt (p < 0.01).


2019 ◽  
Vol 8 (11) ◽  
pp. 509-517 ◽  
Author(s):  
Kyoung-Tak Kang ◽  
Yong-Gon Koh ◽  
Kyoung-Mi Park ◽  
Chong-Hyuck Choi ◽  
Min Jung ◽  
...  

Objectives The aim of this study was to investigate the biomechanical effect of the anterolateral ligament (ALL), anterior cruciate ligament (ACL), or both ALL and ACL on kinematics under dynamic loading conditions using dynamic simulation subject-specific knee models. Methods Five subject-specific musculoskeletal models were validated with computationally predicted muscle activation, electromyography data, and previous experimental data to analyze effects of the ALL and ACL on knee kinematics under gait and squat loading conditions. Results Anterior translation (AT) significantly increased with deficiency of the ACL, ALL, or both structures under gait cycle loading. Internal rotation (IR) significantly increased with deficiency of both the ACL and ALL under gait and squat loading conditions. However, the deficiency of ALL was not significant in the increase of AT, but it was significant in the increase of IR under the squat loading condition. Conclusion The results of this study confirm that the ALL is an important lateral knee structure for knee joint stability. The ALL is a secondary stabilizer relative to the ACL under simulated gait and squat loading conditions. Cite this article: Bone Joint Res 2019;8:509–517.


Author(s):  
Carmen E. Quatman ◽  
Ata M. Kiapour ◽  
Ali Kiapour ◽  
Jason W. Levine ◽  
Samuel C. Wordeman ◽  
...  

Over 100,000 anterior cruciate ligament (ACL) injuries occur annually in the United States [1]. Of these, 70% are classified as non-contact, many of which occur subsequent to a landing from a jump [2]. While most agree that quadriceps (Q) and hamstrings (H) have a significant contribution in knee biomechanics, the role of quadriceps and hamstrings muscle loads and their ratio (Q/H) in ACL injury remains controversial. Understanding muscle recruitment in high risk activities may improve our knowledge of ACL injury mechanisms. Such insight may improve current prevention strategies to decrease the risk of ACL injury and damage to secondary anatomical structures, all of which may in turn minimize associated posttraumatic knee osteoarthritis. As in vivo quantification of muscle loads remains challenging, especially under dynamic conditions, validated finite element (FE) models of the knee can be used to characterize the role of muscle loads in ACL injury. FE analysis has provided considerable insight into knee joint biomechanics, including ligament function, ligament reconstruction technique and implant design. This study utilized a validated FE model of the knee joint to study the effects of quadriceps to hamstrings ratio (Q/H) on ACL strain during a simulated landing from a jump. We hypothesized that both the ratio and magnitude of muscle loads are critical determinants of ACL loading. Further, a threshold may be reached as the magnitude of quadriceps load exceeds hamstrings load.


Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2474 ◽  
Author(s):  
Sébastien Cordillet ◽  
Nicolas Bideau ◽  
Benoit Bideau ◽  
Guillaume Nicolas

This paper presents a novel sensor-to-segment calibration procedure for inertial sensor-based knee joint kinematics analysis during cycling. This procedure was designed to be feasible in-field, autonomously, and without any external operator or device. It combines a static standing up posture and a pedaling task. The main goal of this study was to assess the accuracy of the new sensor-to-segment calibration method (denoted as the ‘cycling’ method) by calculating errors in terms of body-segment orientations and 3D knee joint angles using inertial measurement unit (IMU)-based and optoelectronic-based motion capture. To do so, 14 participants were evaluated during pedaling motion at a workload of 100 W, which enabled comparisons of the cycling method with conventional calibration methods commonly employed in gait analysis. The accuracy of the cycling method was comparable to that of other methods concerning the knee flexion/extension angle, and did not exceed 3.8°. However, the cycling method presented the smallest errors for knee internal/external rotation (6.65 ± 1.94°) and abduction/adduction (5.92 ± 2.85°). This study demonstrated that a calibration method based on the completion of a pedaling task combined with a standing posture significantly improved the accuracy of 3D knee joint angle measurement when applied to cycling analysis.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4799
Author(s):  
Calvin Young ◽  
Sarah DeDecker ◽  
Drew Anderson ◽  
Michele L. Oliver ◽  
Karen D. Gordon

Wrist motion provides an important metric for disease monitoring and occupational risk assessment. The collection of wrist kinematics in occupational or other real-world environments could augment traditional observational or video-analysis based assessment. We have developed a low-cost 3D printed wearable device, capable of being produced on consumer grade desktop 3D printers. Here we present a preliminary validation of the device against a gold standard optical motion capture system. Data were collected from 10 participants performing a static angle matching task while seated at a desk. The wearable device output was significantly correlated with the optical motion capture system yielding a coefficient of determination (R2) of 0.991 and 0.972 for flexion/extension (FE) and radial/ulnar deviation (RUD) respectively (p < 0.0001). Error was similarly low with a root mean squared error of 4.9° (FE) and 3.9° (RUD). Agreement between the two systems was quantified using Bland–Altman analysis, with bias and 95% limits of agreement of 3.1° ± 7.4° and −0.16° ± 7.7° for FE and RUD, respectively. These results compare favourably with current methods for occupational assessment, suggesting strong potential for field implementation.


2021 ◽  
Vol 11 (16) ◽  
pp. 7421
Author(s):  
Balázs Sebesi ◽  
Ádám Fésüs ◽  
Mátyás Varga ◽  
Tamás Atlasz ◽  
Kitty Vadász ◽  
...  

(1) In the present investigation, we tested the hypothesis that unilateral countermovement jump performance is associated with knee joint stabilization ability during unilateral landing on unstable surface. (2) Twenty-five male sport students were tested for dynamometric knee extension and flexion, and hip abduction isometric strength. Myolectric activity of vastus lateralis and medialis, gluteus medius, and biceps femoris muscles were measured during unilateral countermovement vertical jump performed on a force plate, and during unilateral landing on unstable surface. (3) Vertical jump impulse negatively correlated with biceps femoris activation at landing. Participants with greater hip abduction force performed greater vertical jump impulse, and activated the biceps femoris less when landing on unstable surface. Furthermore, participants with smaller knee flexion/extension torque ratio increased biceps femoris/vastus medialis activation ratio at landing. (4) We conclude that hip abduction strength is an important contributor to unilateral vertical jump performance. Because biceps femoris is considered the synergist of the anterior cruciate ligament, we also propose that hip abductors are primary frontal plane protectors of the knee joint by reducing knee valgus and stress, allowing for smaller biceps femoris co-activation (secondary protection) at landing on unstable surface.


Sign in / Sign up

Export Citation Format

Share Document