scholarly journals Emergency Communications Based on Throughput-Aware D2D Multicasting in 5G Public Safety Networks

Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1901 ◽  
Author(s):  
Mengjun Yin ◽  
Wenjing Li ◽  
Lei Feng ◽  
Peng Yu ◽  
Xuesong Qiu

Emergency communications need to meet the developing demand of equipment and the complex scenarios of network in public safety networks (PSNs). Heterogeneous Cloud Radio Access Network (H-CRAN), an important technology of the 5th generation wireless systems (5G), plays an important role in PSN. H-CRAN has the features of resource sharing and centralized allocation which can make up for resource shortage in emergency communications. Therefore, an emergency communications strategy based on Device-to-device (D2D) multicast is proposed to make PSN more flexible and rapid. Nearby users can communicate directly without a base station through D2D. This strategy may guarantee high speed data transmission and stable continuous real-time communications. It is divided into three steps. Firstly, according to the distance between users, the alternative cluster head is divided. Secondly, two kinds of cluster head user selection schemes are developed. One is based on terminal power and the other is based on the number of extended users. Last but not least, the Hungarian Algorithm based on throughput-aware is used to channel multiplexing. The numerical results show that the proposed scheme can effectively extend the coverage of PSN and optimize the utilization of resources.

2018 ◽  
Vol 2018 ◽  
pp. 1-17
Author(s):  
Imad Al-Samman ◽  
Reham Almesaeed ◽  
Angela Doufexi ◽  
Mark Beach

Responding to the unprecedented challenges imposed by the 5G technologies, mobile operators have given significant attention to Heterogeneous Cloud Radio Access Networks (H-CRAN) due to their beneficial features of performing optimization, cost effectiveness, and improving spectral and energy efficiency performance. H-CRAN inherits the attractive benefits of Heterogeneous Networks (HetNet) and the cloud computing by facilitating interference mitigation, scalability, and radio resource control. Consequently, H-CRAN is proposed in this article as a cost-effective potential solution to alleviate intertier interference and improve cooperative processing gains in HetNets by employing cloud computing. H-CRAN can provide efficient resource sharing at the spectrum, network, and infrastructure levels. Therefore, this article proposes H-CRAN cooperative interference mitigation method that enhances the time sharing among Radio Remote Heads (RRH) users. The study proposes an enhanced Almost Blank Subframe (ABSF) technique to increase the SINR and throughput of the small-cell (low power base station) and macrocell users. Simulation results show that the proposed Dynamic Programming-Diverse Almost Blank Subframe (ABSF) Pattern (DP-DAP) scheme improved the macro- and small-cell users up to 56% and 35%, respectively, as compared to other state-of-the-art ABSF schemes.


2019 ◽  
Vol 2019 ◽  
pp. 1-17
Author(s):  
Aizaz U. Chaudhry ◽  
Roshdy H. M. Hafez

This paper presents a concise overview of current public safety communication networks known as LMR (Land Mobile Radio) and emerging LTE- (Long-Term Evolution-) based broadband public safety networks to be deployed in the 700 MHz band. A broadband nationwide network for public safety based on LTE is inevitable where shared or dedicated types of LTE-based public safety networks are possible. Current LTE services do not meet mission-critical requirements and several enhancements have been defined by 3GPP to address this in Releases 12 and 13. First responders are familiar with LMR and consider it to be a reliable technology with massive deployment everywhere. Therefore, it is expected that LMR will continue to exist alongside any new LTE-based broadband public safety network. Recent LTE releases (particularly Release 15) addressed the LMR-LTE interoperability issue and described comprehensive interworking facilities. New and upcoming features and services of LTE in Releases 14 and 15, such as mission-critical data, mission-critical video, and aerial user equipments, are also directly applicable to public safety. The paper endeavours to provide a quick yet meaningful review of all these issues. It also offers a look ahead at the new and rapidly advancing virtualization technologies, such as software-defined radio access network, and radio access network slicing, as enablers for future public safety networks.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2904 ◽  
Author(s):  
Hyebin Park ◽  
Yujin Lim

In 5G networks, heterogeneous cloud radio access network (H-CRAN) is considered a promising future architecture to minimize energy consumption and efficiently allocate resources. However, with the increase in the number of users, studies are performed to overcome the energy consumption problems. In this study, we propose a power control algorithm with mobility prediction to provide a high-energy efficiency for 5G H-CRAN. In particular, the proposed algorithm predicts UE mobility in vehicular mobility scenarios and performs remote radio head (RRH) switching operations based on % prediction results. We formulate an optimization problem to maximize the energy efficiency while satisfying the outage probability requirement. We then propose an RRH switching operation based on Markov mobility prediction and optimize the transmission power based on a gradient method. Simulation results demonstrate the improved energy efficiency compared with those of existing RRH switching-operation algorithms.


Author(s):  
Gee-Kung Chang ◽  
Lin Cheng

A multi-tier radio access network (RAN) combining the strength of fibre-optic and radio access technologies employing adaptive microwave photonics interfaces and radio-over-fibre (RoF) techniques is envisioned for future heterogeneous wireless communications. All-band radio spectrum from 0.1 to 100 GHz will be used to deliver wireless services with high capacity, high link speed and low latency. The multi-tier RAN will improve the cell-edge performance in an integrated heterogeneous environment enabled by fibre–wireless integration and networking for mobile fronthaul/backhaul, resource sharing and all-layer centralization of multiple standards with different frequency bands and modulation formats. In essence, this is a ‘no-more-cells’ architecture in which carrier aggregation among multiple frequency bands can be easily achieved with seamless handover between cells. In this way, current and future mobile network standards such as 4G and 5G can coexist with optimized and continuous cell coverage using multi-tier RoF regardless of the underlying network topology or protocol. In terms of users’ experience, the future-proof approach achieves the goals of system capacity, link speed, latency and continuous heterogeneous cell coverage while overcoming the bandwidth crunch in next-generation communication networks.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Lei Feng ◽  
Wenjing Li ◽  
Peng Yu ◽  
Xuesong Qiu

Public Safety Network (PSN) is the network for critical communication when disaster occurs. As a key technology in 5G, Cloud-Radio Access Network (C-RAN) can play an important role in PSN instead of LTE-based RAN. This paper firstly introduces C-RAN based PSN architecture and models the OFDM resource allocation problem in C-RAN based PSN as an integer quadratic programming, which allows the trade-off between expected bitrates and allocating fairness of PSN Service User (PSU). However, C-RAN based PSN needs to improve the efficiency of allocating algorithm because of a mass of PSU-RRH associations when disaster occurs. To deal with it, the resources allocating problem with integer variables is relaxed into one with continuous variables in the first step and an algorithm based on Generalized Bender’s Decomposition (GBD) is proposed to solve it. Then we use Feasible Pump (FP) method to get a feasible integer solution on the original OFDM resources allocation problem. The final experiments show the total throughput achieved by C-RAN based PSN is at most higher by 19.17% than the LTE-based one. And the average computational time of the proposed GBD and FP algorithm is at most lower than Barrier by 51.5% and GBD with no relaxation by 30.1%, respectively.


2010 ◽  
Vol 39 ◽  
pp. 482-487
Author(s):  
Gang Zhu Qiao ◽  
Jian Chao Zeng

The routing protocol which can meet the requirement of underground wireless sensor network plays a decisive role in improving the monitoring quality and the survival time of network. Because of the different energy supplement method of anchor nodes and unknown nodes, these two types of nodes are different energy levels, which determines that the task of the data forwarding should be completed by the blind node as far as possible. By combining the position information and cluster routing technology, a position-based cluster routing (PBCR) protocol is proposed. In the protocol the tunnel is divided into a number of regions and the nodes within the region form a cluster. The protocol chooses the blind node nearest to the base station in the region as cluster head and builds up the chain between the cluster heads as the network data transmission backbone which can help achieve the high-speed data transmission. Simulation results show that the PBCR protocol can ensure a balanced use of node energy and prolong the life cycle of the network.


Sign in / Sign up

Export Citation Format

Share Document