scholarly journals Overhead Transmission Line Sag Estimation Using the Simple Opto-Mechanical System with Fiber Bragg Gratings—Part 2: Interrogation System

Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2652 ◽  
Author(s):  
Krzysztof Skorupski ◽  
Damian Harasim ◽  
Patryk Panas ◽  
Sławomir Cięszczyk ◽  
Piotr Kisała ◽  
...  

This article presents the use of a sensor with fiber Bragg grating along with an interrogation system used for monitoring the overhead lines’ wire elongation. The possible interrogation methods based on adjusted filters were considered. In the experimental part, three types of fiber Bragg grating pairs, characterized by a small shift in spectra in pairs and gratings with exact matching, were examined. The study showed that, by choosing the appropriate mechanical parameters of the elongation transformer with the optical parameters of the sensor and dedicated filter, the optomechanical system can be adjusted to the required range of overhead line wire sag observation. The range of sag depends on the distance between the poles, the wire type, and its real length in the span, which effectively determines the sag.

2021 ◽  
Author(s):  
Fabián Barón ◽  
Germán Álvarez-Botero ◽  
Francisco Amórtegui G. ◽  
Daniel Pastor ◽  
Margarita Varón

Sensors ◽  
2018 ◽  
Vol 18 (2) ◽  
pp. 365 ◽  
Author(s):  
Guo-ming Ma ◽  
Ya-bo Li ◽  
Nai-qiang Mao ◽  
Cheng Shi ◽  
Bo Zhang ◽  
...  

2021 ◽  
Vol 11 (14) ◽  
pp. 6609
Author(s):  
Anton Vladimirovich Burtsev ◽  
Vasily Nikolaevich Selivanov

This paper proposes a simple method for calculating the lightning impact level on overhead transmission power lines, taking into account its entire length. The method uses lightning historical data and the geographic coordinates of power line towers. It is based on calculating the distances between both arrays of lightning and of towers. The method has been tested on overhead lines in the Murmansk region of the Russian Federation and can be applied to any overhead line if a lightning dataset in the overhead line area is available. This study is useful for electric power suppliers because it provides valuable information about the most lightning-prone sections of overhead power lines. The method can also be beneficial to people selecting the optimal route (least amount of lightning strikes) for power transmission lines based on lightning density.


Author(s):  
Svetlana Guseva ◽  
Lubov Petrichenko

The choice of optimum cross section for overhead line by economic intervals' methodIn this paper an approach to choosing the optimum cross section for overhead line in conditions of incomplete and uncertain information is considered. The two methods of such choice are presented: method of economic current density and economic intervals' method. The correction of the economic intervals method is offered under market conditions of costs. As example 20 kV and 110 kV overhead lines with aluminum, copper and ferroaluminum wires are selected. Universal nomograms with different standard cross section are calculated and constructed. The graphics using Mathcad software are offered.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3639
Author(s):  
Abdelfateh Kerrouche ◽  
Taoufik Najeh ◽  
Pablo Jaen-Sola

Railway infrastructure plays a major role in providing the most cost-effective way to transport freight and passengers. The increase in train speed, traffic growth, heavier axles, and harsh environments make railway assets susceptible to degradation and failure. Railway switches and crossings (S&C) are a key element in any railway network, providing flexible traffic for trains to switch between tracks (through or turnout direction). S&C systems have complex structures, with many components, such as crossing parts, frogs, switchblades, and point machines. Many technologies (e.g., electrical, mechanical, and electronic devices) are used to operate and control S&C. These S&C systems are subject to failures and malfunctions that can cause delays, traffic disruptions, and even deadly accidents. Suitable field-based monitoring techniques to deal with fault detection in railway S&C systems are sought after. Wear is the major cause of S&C system failures. A novel measuring method to monitor excessive wear on the frog, as part of S&C, based on fiber Bragg grating (FBG) optical fiber sensors, is discussed in this paper. The developed solution is based on FBG sensors measuring the strain profile of the frog of S&C to determine wear size. A numerical model of a 3D prototype was developed through the finite element method, to define loading testing conditions, as well as for comparison with experimental tests. The sensors were examined under periodic and controlled loading tests. Results of this pilot study, based on simulation and laboratory tests, have shown a correlation for the static load. It was shown that the results of the experimental and the numerical studies were in good agreement.


Optik ◽  
2021 ◽  
pp. 166993
Author(s):  
Xianfeng Zhao ◽  
Zhen’an Jia ◽  
Wei Fan ◽  
Wangfei Liu ◽  
Hong Gao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document