scholarly journals Experimental Strain Measurement Approach Using Fiber Bragg Grating Sensors for Monitoring of Railway Switches and Crossings

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3639
Author(s):  
Abdelfateh Kerrouche ◽  
Taoufik Najeh ◽  
Pablo Jaen-Sola

Railway infrastructure plays a major role in providing the most cost-effective way to transport freight and passengers. The increase in train speed, traffic growth, heavier axles, and harsh environments make railway assets susceptible to degradation and failure. Railway switches and crossings (S&C) are a key element in any railway network, providing flexible traffic for trains to switch between tracks (through or turnout direction). S&C systems have complex structures, with many components, such as crossing parts, frogs, switchblades, and point machines. Many technologies (e.g., electrical, mechanical, and electronic devices) are used to operate and control S&C. These S&C systems are subject to failures and malfunctions that can cause delays, traffic disruptions, and even deadly accidents. Suitable field-based monitoring techniques to deal with fault detection in railway S&C systems are sought after. Wear is the major cause of S&C system failures. A novel measuring method to monitor excessive wear on the frog, as part of S&C, based on fiber Bragg grating (FBG) optical fiber sensors, is discussed in this paper. The developed solution is based on FBG sensors measuring the strain profile of the frog of S&C to determine wear size. A numerical model of a 3D prototype was developed through the finite element method, to define loading testing conditions, as well as for comparison with experimental tests. The sensors were examined under periodic and controlled loading tests. Results of this pilot study, based on simulation and laboratory tests, have shown a correlation for the static load. It was shown that the results of the experimental and the numerical studies were in good agreement.

2010 ◽  
Vol 136 ◽  
pp. 153-157
Author(s):  
Yu Hong Du ◽  
Xiu Ming Jiang ◽  
Xiu Ren Li

To solve the problem of detecting the permeability of the textile machinery, a dedicated test system has been developed based on the pressure difference measuring method. The established system has a number of advantages including simple, fast and accurate. The mathematical model of influencing factors for permeability is derived based on fluid theory, and the relationship of these parameters is achieved. Further investigations are directed towards the inherent characteristics of the control system. Based on the established model and measuring features, an information fusion based clustering control system is proposed to implement the measurement. Using this mechanical structure, a PID control system and a cluster control system have been developed. Simulation and experimental tests are carried out to examine the performance of the established system. It is noted that the clustering method has a high dynamic performance and control accuracy. This cluster fusion control method has been successfully utilized in powder metallurgy collar permeability testing.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 770
Author(s):  
Konrad Markowski ◽  
Kacper Wojakowski ◽  
Ernest Pokropek ◽  
Michał Marzęcki

In this article, an extensive analysis of the performance of the fiber optics-based abrasion sensor that utilizes chirped fiber Bragg grating, is presented. For the response investigation during abrasion, a numerical analysis, based on the transfer matrix method and coupled mode theory, is provided. The influence of the SLED source spectral position in respect to the spectral position of the chirped fiber Bragg grating is evaluated together with the influence of the changes of the ambient temperature of the sensor. Experimental verification of the sensor’s performance is provided, together with the proposition of the packaging of the sensor. In the article, a simple, cost-effective and multiplexation-ready concept of the wear or abrasion sensor system is presented and discussed.


2019 ◽  
Vol 13 ◽  
Author(s):  
Luca Massari ◽  
Calogero M. Oddo ◽  
Edoardo Sinibaldi ◽  
Renaud Detry ◽  
Joseph Bowkett ◽  
...  

2014 ◽  
Author(s):  
Stefan Remund ◽  
Anke Bossen ◽  
Xianfeng Chen ◽  
Ling Wang ◽  
Adedotun Adebayo ◽  
...  

2013 ◽  
Vol 64 (3) ◽  
Author(s):  
Liau Qian Yu ◽  
Asrul Izam Azmi ◽  
Siti Musliha Aishah Musa ◽  
Raja Kamarulzaman Raja Ibrahim

The development of Fiber Bragg Grating (FBG) sensing technique has improved significantly especially in the sensor head design and real-time data acquisition technique. This paper presents the development of a simple and cost effective packaging technique that further enhances the performances of the FBG sensor. The packaged FBG sensor overcomes the nonuniform heat distribution of a bare FBG that causes eccentric response of FBG spectrum. Therefore, the packaged FBG sensor could be operated for a localized area with high temperature differential. The packaging also compensates the unwanted strain effect from the surrounding which makes temperature measurement become more accurate. The experimental works have been successfully carried out to demonstrate the system operation and the packaging functionalities. The temperature sensitivity coefficient of the bare FBG sensor measured in experiment is 10.05 pm/°C, while the packaged fiber sensor is 10.09 pm/°C, which are expected from the design.


2014 ◽  
Vol 1061-1062 ◽  
pp. 1208-1212
Author(s):  
Bayan Bevrani ◽  
Robert Burdett ◽  
Prasad K.D.V. Yarlagadda

Increasing train speeds is conceptually a simple and straight forward method to expand railway capacity, for example in comparison to other more extensive and elaborate alternatives. In this article an analytical capacity model has been investigated as a means of performing a sensitivity analysis of train speeds. The results of this sensitivity analysis can help improve the operation of this railway system and to help it cope with additional demands in the future. To test our approach a case study of the Rah Ahane Iran (RAI) national railway network has been selected. The absolute capacity levels for this railway network have been determined and the analysis shows that increasing trains speeds may not be entirely cost effective in all circumstances.


Sign in / Sign up

Export Citation Format

Share Document