scholarly journals Quantifying the Computational Efficiency of Compressive Sensing in Smart Water Network Infrastructures

Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3299 ◽  
Author(s):  
George Tzagkarakis ◽  
Pavlos Charalampidis ◽  
Stylianos Roubakis ◽  
Antonis Makrogiannakis ◽  
Panagiotis Tsakalides

Monitoring contemporary water distribution networks (WDN) relies increasingly on smart metering technologies and wireless sensor network infrastructures. Smart meters and sensor nodes are deployed to capture and transfer information from the WDN to a control center for further analysis. Due to difficulties in accessing the water assets, many water utility companies employ battery-powered nodes, which restricts the use of high sampling rates, thus limiting the knowledge we can extract from the recorder data. To mitigate this issue, compressive sensing (CS) has been introduced as a powerful framework for reducing dramatically the required bandwidth and storage resources, without diminishing the meaningful information content. Despite its well-established and mathematically rigorous foundations, most of the focus is given on the algorithmic perspective, while the real benefits of CS in practical scenarios are still underexplored. To address this problem, this work investigates the advantages of a CS-based implementation on real sensing devices utilized in smart water networks, in terms of execution speedup and reduced ener experimental evaluation revealed that a CS-based scheme can reduce compression execution times around 50 % , while achieving significant energy savings compared to lossless compression, by selecting a high compression ratio, without compromising reconstruction fidelity. Most importantly, the above significant savings are achieved by simultaneously enabling a weak encryption of the recorded data without the need for additional encryption hardware or software components.

2018 ◽  
Vol 19 (3) ◽  
pp. 846-854 ◽  
Author(s):  
M. A. Pardo ◽  
J. Valdes-Abellan

Abstract Traditional methods for prioritizing the renewal of water are based on heuristic models, such as the number of breaks per length, rule-of-thumb, and records held by the water utility companies. Efficient management of water distribution networks involves factoring in water and energy losses as the key criteria for planning pipe renewal. Prioritizing the replacement of a pipe according to the highest value of unit headloss due to ageing does not consider the impact on water and energy consumption for the whole network. Thus, this paper proposes a methodology to prioritize pipe replacement according to water and energy savings per monetary unit invested – economic prioritization. This renewal plan shows different results if comparing with replacing pipelines with regard to age and it requires calculating water and energy audits of the water distribution networks. Moreover, the required time to recover the investment performed needs to be calculated. The methodology proposed in this work is compared with the unit headloss criterion used in a real water-pressurized network. The results demonstrate that using the unit headloss criterion neither water, energy nor the investment is optimized. Significant water and energy savings are not fully exploited.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2530 ◽  
Author(s):  
Luigi Cimorelli ◽  
Carmine Covelli ◽  
Bruno Molino ◽  
Domenico Pianese

Greenhouse gas emission is one of the main environmental issues of today, and energy savings in all industries contribute to reducing energy demand, implying, in turn, less carbon emissions into the atmosphere. In this framework, water pumping systems are one of the most energy-consuming activities. The optimal regulation of pumping systems with the use of variable speed drives is gaining the attention of designers and managing authorities. However, optimal management and operation of pumping systems is often performed, employing variable speed drives without considering if the energy savings are enough to justify their purchasing and installation costs. In this paper, the authors compare two optimal pump scheduling techniques, optimal regulation of constant speed pumps by an optimal ON/OFF sequence and optimal regulation with a variable speed pump. Much of the attention is devoted to the analysis of the costs involved in a hypothetical managing authority for the water distribution system in order to determine whether the savings in operating costs is enough to justify the employment of variable speed drives.


2013 ◽  
Author(s):  
Jill B. Kjellsson ◽  
David Greene ◽  
Raj Bhattarai ◽  
Michael E. Webber

Nationally, 4% of electricity usage goes towards moving and treating water and wastewater. The energy intensity of the water and wastewater utility sector is affected by many factors including water source, water quality, and the distance and elevation that water must be transported. Furthermore, energy accounts for 10% or more of a utility’s total operating cost, suggesting that energy savings can account for significant cost savings. Better knowledge of where and when energy is used could support strategic energy interventions and reveal opportunities for efficiency. Accordingly, this investigation quantifies energy intensity by process and type, including electricity and natural gas, and explores the time-varying nature of electric energy consumption for potable water distribution using the Austin Water Utility (AWU) in Austin, Texas as a case study. This research found that most of energy consumed by the AWU is for pumping throughout the distribution network (57%) and at lift stations (10%) while potable water treatment accounts for the least (5%). Though the focus is site specific, the methodology shown herein can be applied to other utilities with sufficient data.


2018 ◽  
Author(s):  
Karel van Laarhoven ◽  
Ina Vertommen ◽  
Peter van Thienen

Abstract. Genetic algorithms can be a powerful tool for the automated design of optimal drinking water distribution networks. Fast convergence of such algorithms is a crucial factor for successful practical implementation at the drinking water utility level. In this technical note, we therefore investigate the performance of a suite of genetic variators that was tailored to the optimisation of a least-cost network design. Different combinations of the variators are tested in terms of convergence rate and the robustness of the results during optimisation of the real world drinking water distribution network of Sittard, the Netherlands. The variator configurations that reproducibly reach the furthest convergence after 105 function evaluations are reported. In the future these may aid in dealing with the computational challenges of optimizing real world networks.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5806
Author(s):  
Joseph D. Pineda Sandoval ◽  
Bruno Melo Brentan ◽  
Gustavo Meirelles Lima ◽  
Daniel Hernández Cervantes ◽  
Daniel A. García Cervantes ◽  
...  

Chlorine demand as a disinfectant for water utility impacts on unintended energy consumption from electrolysis manufacture; thus, diminishing the chlorine consumption also reduces the environmental impact and energy consumption. Problems of disinfectant distribution and uniformity in Water Distribution Networks (WDN) are associated with the exponential urban growth and the physical and biochemical difficulties within the network. This study optimizes Chlorine Booster Stations (CBS) location on a network with two main objectives; (1) to deliver minimal Free Residual Chlorine (FRC) throughout all demand nodes according to country regulations, and (2) to reduce day chlorine mass concentration supplied in the system by applying an hour time pattern in CBS, consequently associated economic, energy and environmental impacts complying with regulatory standards. The application is demonstrated on a real-world WDN modeled from Guanajuato, Mexico. The resulting optimal location and disinfectant dosage schedule in CBS provided insights on maintaining disinfectant residuals throughout all the WDN to prevent health issues and diminishing chlorine consumption.


2021 ◽  
Vol 8 (4) ◽  
pp. 230-260
Author(s):  
Maria Teresa Matriano

Quantifying the Mismatch in Smart Water Meter Readings in Muscat Water Distribution Network (DIAM) – Case of Oman   Ibrahim Nasser Khalifa Al-Mamari* *MBA, Middle East College Email: [email protected] Dr. Maria Teresa Matriano  Faculty/Assistant Professor, Department of Post-Graduate Studies, Middle East College, Oman Email: [email protected]   Abstract Purpose:- The study is intended to focus on quantifying the mismatch between the consumption data collected on the project site to the estimated reading generated by the system. The mismatch quantification process involves formulating a theoretical mathematical modelling using Bernoulli’s equation that will help in reducing the conflicts in mismatch of data between the actual and estimated water consumption readings.    Design / methodology / approach:- The study revolves around basic survey of different journals and articles which relates closely to the topic.There’s application of qualitative method in which the results depend on the opinion of the focus group participants. Findings:- Based on survey results and flow calculations,  the flow was compared with the actual discharge measured from the smart meters; mismatch was ensured in the actual discharge at transmission and the discharge at the distribution line at each consumer location.  The opinion of the focus group suggests to upgrade the existing system in Diam. Research limitation / Implications:- A recognizable mismatch was made that influences Diam to create estimated charging. A viable computerized water spillage checking system was consolidated to recognize and annihilate the mismatch.The are recommendations to minimize the estimation system in billing at the water supplier end; and the inclusion of a new technology to quantify the mismatch in the existing system. A SCADA based system to localize the flaw point; and the inclusion of big data analysis in the bill generation software should be implemented. Originality / value:-  There are no previous studies on mismatch quantification process in Oman, and this study would propose a system that would be helpful in finding the causes of mismatch and eradicating them. Keywords:     Diam, Distribution Network, Smart Meters, Estimated Reading, Water Consumption                    Mismatch, Numerical Modeling


2018 ◽  
Vol 11 (2) ◽  
pp. 101-105
Author(s):  
Karel van Laarhoven ◽  
Ina Vertommen ◽  
Peter van Thienen

Abstract. Genetic algorithms can be a powerful tool for the automated design of optimal drinking water distribution networks. Fast convergence of such algorithms is a crucial factor for successful practical implementation at the drinking water utility level. In this technical note, we therefore investigate the performance of a suite of genetic variators that was tailored to the optimization of a least-cost network design. Different combinations of the variators are tested in terms of convergence rate and the robustness of the results during optimization of the real-world drinking water distribution network of Sittard, the Netherlands. The variator configurations that reproducibly reach the furthest convergence after 105 function evaluations are reported. In the future these may aid in dealing with the computational challenges of optimizing real-world networks.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 443
Author(s):  
Ildeberto Santos-Ruiz ◽  
Francisco-Ronay López-Estrada ◽  
Vicenç Puig ◽  
Guillermo Valencia-Palomo ◽  
Héctor-Ricardo Hernández

This paper presents a method for optimal pressure sensor placement in water distribution networks using information theory. The criterion for selecting the network nodes where to place the pressure sensors was that they provide the most useful information for locating leaks in the network. Considering that the node pressures measured by the sensors can be correlated (mutual information), a subset of sensor nodes in the network was chosen. The relevance of information was maximized, and information redundancy was minimized simultaneously. The selection of the nodes where to place the sensors was performed on datasets of pressure changes caused by multiple leak scenarios, which were synthetically generated by simulation using the EPANET software application. In order to select the optimal subset of nodes, the candidate nodes were ranked using a heuristic algorithm with quadratic computational cost, which made it time-efficient compared to other sensor placement algorithms. The sensor placement algorithm was implemented in MATLAB and tested on the Hanoi network. It was verified by exhaustive analysis that the selected nodes were the best combination to place the sensors and detect leaks.


Sign in / Sign up

Export Citation Format

Share Document