scholarly journals Simultaneous Measurement of 6DOF Motion Errors of Linear Guides of CNC Machine Tools Using Different Modes

Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3439
Author(s):  
Peizhi Jia ◽  
Bin Zhang ◽  
Qibo Feng ◽  
Fajia Zheng

Based on the prior work on the six degrees of freedom (6DOF) motion errors measurement system for linear axes, and for the different types of machine tools and different installation methods, this study used a ray tracing idea to establish the measurement models for two different measurement modes: (1) the measurement head is fixed and the target mirror moves and (2) the target mirror is fixed and the measurement head moves. Several experiments were performed on the same linear guide using two different measurement modes. The comparative experiments show that the two measurement modes and their corresponding measurement models are correct and effective. In the actual measurement process, it is therefore possible to select the corresponding measurement model according to the measurement mode. Furthermore, the correct motion error evaluation results can be obtained.

2019 ◽  
Vol 9 (13) ◽  
pp. 2701 ◽  
Author(s):  
Li ◽  
Yang ◽  
Gao ◽  
Su ◽  
Wei ◽  
...  

Error compensation technology offers a significant means for improving the geometric accuracy of CNC machine tools (MTs) as well as extending their service life. Measurement and identification are important prerequisites for error compensation. In this study, a measurement system, mainly composed of a self-developed micro-angle sensor and an L-shape standard piece, is proposed. Meanwhile, a stepwise identification method, based on an integrated error model, is established. In one measurement, four degrees-of-freedom errors, including two-dimensional displacement and two-dimensional angle of a linear guideway, can be obtained. Furthermore, in accordance with the stepwise identification method, the L-shape standard piece is placed in three different planes, so that the measurement and identification of all 21 geometric errors can be implemented. An experiment is carried out on a coordinate measuring machine (CMM) to verify the system. The residual error of the angle error, translation error and squareness error are 1.5″, 2 μm and 3.37″, respectively, and these are compared to the values detected by a Renishaw laser interferometer.


2007 ◽  
Vol 10-12 ◽  
pp. 621-625
Author(s):  
X.S. Wang ◽  
Jian Guo Yang

This article sets forth a new precision measurement method of CNC machine tools. The method incorporates the laser interferometer and the measurement principle of the double ball bar (DBB), and can measure the machine tool precision under the high feed rate condition. The generalized measurement model of three-axis has been built. Data analysis software is developed to simulate the run condition of machine tools. The repeatable experiment results proves that the method is feasible and its precision is higher than DBB`s.


1986 ◽  
Vol 39 (9) ◽  
pp. 1331-1338 ◽  
Author(s):  
Yoram Koren

The principal control structure of CNC machine tools and industrial robots is similar, since in both systems each axis of motion is separately controlled with a position feedback loop. Nevertheless, the control of robots is more complex, since they include more degrees of freedom and the motion of each joint is not independent of other joints. This paper compares the conventional control schemes of both systems, and summarizes recent developments in adaptive control of machine tools and robots.


2014 ◽  
Vol 494-495 ◽  
pp. 448-451
Author(s):  
Jia Zheng Wei

The 5-DOF CNC machine tools motion error, motion space simulation and interference are analyzed. The tool machine dynamic and static interference, trajectory planning are discussed, which realizes the parts manufacturability and processing rationality.


Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1764 ◽  
Author(s):  
Zheng ◽  
Feng ◽  
Zhang ◽  
Li

A novel method for simultaneously directly measuring six-degrees-of-freedom (6DOF) geometric motion errors of CNC machine tools was proposed, and a corresponding measurement system was developed. This method can not only be applied for measuring a linear axis, but also for a rotary axis. A single-mode fiber was used to separate the measuring unit from the laser source in order to ensure system thermal stability and measurement accuracy. The method has the advantages of high efficiency and good accuracy, and requires no complicated decoupling calculation. The positioning error of the linear axis and radial motion error of the rotary axis are measured by laser interferometry and other 5DOF geometric motion errors by laser collimation. A series of experiments were performed to verify the feasibility and effectiveness of the developed measurement system.


2008 ◽  
Vol 381-382 ◽  
pp. 145-148
Author(s):  
K.H. Lin ◽  
Ya Hui Hu ◽  
C.A. Chan ◽  
Ming Chang

The dynamic characteristic of CNC (computer numerical control) machine tools is a critical role to decide the accuracy and speed of machine. It is very important to improve the precision and reduce the motion error so as to manufacture complex and fine products. In general, the motion error is estimated by a two or three-dimensional ball bar measurement system. Although this technology is capable of dynamical measurement, its condition should be confined to a low speed or a large radius. A new measurement method for measuring circular motion error of CNC machine tools is proposed in this paper. The instrument consists of a dual-frequency laser interferometer, a beam splitter and two corner cubes. In order to evaluate the exactness of the results we get from our measurement system, we use RSF’s grid encoder to do another experiment and compare both the results. According to the results shown, our measurement system can measure both of the X and Y axes of the plane of the CNC stage in a small scale at the same time and can simplify the calibration procedure as well as shorten the time of measurement. This method can accomplish the two-axis measurement at a high speed, without being restricted by radius variations. It is a good, simple and effective measurement method.


2014 ◽  
Vol 915-916 ◽  
pp. 1005-1008
Author(s):  
Qi Hong Huang

Five-axis CNC machine tools are constituted by three-axis machine tools and two rotational degrees of freedom. Using the two rotary axes, five-axis CNC machine tools can improve the accessibility and become an important means of machining complex surface parts. In order to get high tapered complicated curved surface parts, a dual turntable five-axis machine with A-C tables was introduced and the mathematical models of the CNC processing of the workpiece were established. Through machining experiment of the several major processed forms, it shows that the dual turntable five-axis machine system has high machining quality and could be used to machine the difficult-to-cut materials, spatial complicated curved surface parts and special requirements.


2021 ◽  
Author(s):  
Jinwei Fan ◽  
Bentian Xie ◽  
Qinzhi Zhao ◽  
Junjian Wang

Abstract In order to solve the problem of precision optimization design of CNC machine tools, this paper proposes an optimized allocation method of machine tool tolerance parameters that takes into account the slight deformation of the machine tool. First, establish a tolerance-based geometric error prediction model, and establish a spatial motion error model based on the theory of multi-body systems(MBS); Homogeneously, perform finite element analysis(FEA) on the CNC internal cylindrical compound grinding machine to obtain the slight deformation of the machine tool, and apply the result to the optimal tolerance allocation In the constraint conditions, the final optimal allocation plan is obtained; Finally, the genetic algorithm is used to simulate and analyze the plan, and the optimal tolerance allocation result is obtained. The result shows that most of the tolerance parameters have been relaxed, which means that the machine tool’s manufacturing cost. Through experiments, it is verified that the optimized machine tool machining accuracy pass rates are 98.5%, 98.25%, and 97.85%, respectively. Therefore, the optimal allocation method of tolerances that considers small deformations proposed in this paper is effective.


Sign in / Sign up

Export Citation Format

Share Document