scholarly journals Characteristics of A Hybrid Detector Combined with A Perovskite Active Layer for Indirect X-ray Detection

Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6872
Author(s):  
Hailiang Liu ◽  
Jehoon Lee ◽  
Jungwon Kang

In this study, we investigated the characteristics of an organic-inorganic hybrid indirect-type X-ray detector with a CH3NH3PbI3 (MAPbI3) perovskite active layer. A layer with a thickness of 192 nm annealed at 100 °C showed higher absorption, higher crystallinity, and lower surface roughness than did perovskite layers made under different conditions. In the indirect X-ray detector, a scintillator coupled with the detector to convert X-ray photons to visible photons, and the converted photons were absorbed by the active layer to generate charge carriers. The detector with the optimized MAPbI3 (192 nm thick and 100 °C annealing condition) active layer was coupled with a CsI(Tl) scintillator which consisted of 400 μm thick CsI and 0.5 mm thick Al, and achieved the highest sensitivity, i.e., 2.84 mA/Gy·cm2. In addition, the highest short-circuit current density (JSC), i.e., 18.78 mA/cm2, and the highest mobility, i.e., 2.83 × 10−4 cm2/V·s, were obtained from the same detector without the CsI(Tl) scintillator.

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4268
Author(s):  
Jessica de Wild ◽  
Gizem Birant ◽  
Guy Brammertz ◽  
Marc Meuris ◽  
Jef Poortmans ◽  
...  

Ultrathin Cu(In,Ga)Se2 (CIGS) absorber layers of 550 nm were grown on Ag/AlOx stacks. The addition of the stack resulted in solar cells with improved fill factor, open circuit voltage and short circuit current density. The efficiency was increased from 7% to almost 12%. Photoluminescence (PL) and time resolved PL were improved, which was attributed to the passivating properties of AlOx. A current increase of almost 2 mA/cm2 was measured, due to increased light scattering and surface roughness. With time of flight—secondary ion mass spectroscopy, the elemental profiles were measured. It was found that the Ag is incorporated through the whole CIGS layer. Secondary electron microscopic images of the Mo back revealed residuals of the Ag/AlOx stack, which was confirmed by energy dispersive X-ray spectroscopy measurements. It is assumed to induce the increased surface roughness and scattering properties. At the front, large stains are visible for the cells with the Ag/AlOx back contact. An ammonia sulfide etching step was therefore applied on the bare absorber improving the efficiency further to 11.7%. It shows the potential of utilizing an Ag/AlOx stack at the back to improve both electrical and optical properties of ultrathin CIGS solar cells.


2019 ◽  
Vol 7 (37) ◽  
pp. 21309-21320 ◽  
Author(s):  
Song-Fu Liao ◽  
Chun-Fu Lu ◽  
Adane Desta Fenta ◽  
Chin-Ti Chen ◽  
Chi-Yang Chao ◽  
...  

In addition to the thick active layer (>300 nm), the extended nano-fibrillar network and a high face-on ratio of isoindigo copolymers in the nano-fibrillar network raise the short-circuit current density up to 22 mA cm−2 and efficiency near 10.7%.


2017 ◽  
Vol 17 (1) ◽  
pp. 13
Author(s):  
Shobih Shobih ◽  
Rizky Abdillah ◽  
Erlyta Septa Rosa

Hybrid polymer solar cell has privilege than its conventional structure, where it usually has structure of (ITO/PEDOT:PSS/Active Layer/Al). In humid environment the PEDOT:PSS will absorb water and hence can easily etch the ITO. Therefore it is necessary to use an alternative method to avoid this drawback and obtain more stable polymer solar cells, namely by using hybrid polymer solar cells structure with an inverted device architecture from the conventional, by reversing the nature of charge collection. In this paper we report the results of the fabrication of inverted bulk heterojunction polymer solar cells based on P3HT:PCBM as active layer, utilizing ZnO interlayer as buffer layer between the ITO and active layer with a stacked structure of ITO/ZnO/P3HT:PCBM/PEDOT:PSS/Ag. The ZnO interlayer is formed through short route, i.e. by dissolving ZnO nanoparticles powder in chloroform-methanol solvent blend rather than by sol-gel process. Based on the measurement results on electrical characteristics of inverted polymer solar cells under 500 W/m2 illumination and AM 1.5 direct filter at room temperature, cell with annealing process of active layer at 110 °C for 10 minutes results in higher cell performance than without annealing, with an open-circuit voltage of 0.21 volt, a short-circuit current density of 1.33 mA/cm2 , a fill factor of 43.1%, and a power conversion efficiency of 0.22%. The low cell’s performance is caused by very rough surface of ZnO interlayer.


2021 ◽  
Vol 22 (2) ◽  
pp. 135-148
Author(s):  
Abdul Halim Ikram Mohamed ◽  
Mohd Lukman Inche Ibrahim

We investigate how an enhanced light absorption at a specific position inside the active layer affects the performance of organic photovoltaic cells (OPVs), namely the short-circuit current density ( ), the open-circuit voltage ( ), the fill factor (FF), and the power conversion efficiency (PCE). The performance is calculated using an updated version of a previously published analytical current-voltage model for OPVs, where the updated model allows the light absorption profile to be described by any functions provided that analytical solutions can be produced. We find that the light absorption profile affects the performance through the drift current. When the mobility imbalance is not very high (when the ratio of the mobility of the faster carrier type to the mobility of the slower carrier type is less than about ), the PCE is maximized when the light absorption is concentrated at the center of the active layer. When the mobility imbalance is very high (when the ratio of the mobility of the faster carrier type to the mobility of the slower carrier type is more than approximately ), the PCE is maximized when the light absorption is concentrated near the electrode collecting the slower carrier type. Therefore, it is important to ensure that the light absorption profile is properly tuned so that the performance of OPVs is maximized. Moreover, any efforts that we make to improve the performance should not lead to a light absorption profile that would actually impair the overall performance. ABSTRAK: Kajian ini menilai bagaimana penyerapan cahaya yang tinggi pada bahagian tertentu lapisan aktif mempengaruhi prestasi sel fotovoltaik organik (OPV), iaitu ketumpatan arus litar pintas (Jsc), voltan litar terbuka (Voc), faktor pengisian (FF), dan kecekapan penukaran kuasa (PCE). Prestasi dikira mengguna pakai model terkini yang diperbaharui dari model asal analitikal OPV voltan-arus, di mana model ini membenarkan mana-mana profil penyerapan cahaya digunakan asalkan penyelesaian analitikal terhasil.  Dapatan kajian mendapati profil penyerapan cahaya mempengaruhi prestasi berdasarkan arus hanyut. Apabila ketidakseimbangan pergerakan caj tidak begitu tinggi (di mana nisbah pergerakan pembawa caj laju kepada perlahan adalah kurang daripada 103), PCE menjadi maksimum jika penyerapan cahaya bertumpu pada tengah lapisan aktif. Apabila ketidakseimbangan pergerakan caj sangat tinggi (di mana nisbah pergerakan pembawa caj laju kepada perlahan adalah lebih daripada 104), PCE menjadi maksimum jika penyerapan cahaya bertumpu pada elektrod yang mengutip pembawa caj perlahan. Oleh itu, kedudukan talaan profil penyerapan cahaya yang tepat adalah sangat penting bagi menentukan prestasi OPV dimaksimumkan. Tambahan, apa sahaja usaha penambahbaikan prestasi seharusnya tidak menyebabkan pengurangan keseluruhan prestasi profil penyerapan cahaya.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Kurniawan Foe ◽  
Gon Namkoong ◽  
Matthew Samson ◽  
Enas M. Younes ◽  
Ilho Nam ◽  
...  

We fabricated a poly[3-hexylthiophene] (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) organic photovoltaic cells (OPCs) using TiOxinterfacial layer. We performed optimization processes for P3HT : PC61BM with the TiOxlayer. We found that a solution based TiOxlayer coated at a spin speed of 3000 rpm improved the photon absorption of the active layer. An optimized TiOxlayer was also used as the interfacial layer to investigate the stability of P3HT : PC61BM OPC. After 70 days of storage, we observed that the short-circuit current density (JSC) dropped by 16.2%, fill factor (FF) dropped by 10.6%, and power conversion efficiency (PCE) dropped approximately by 25%, while the open-circuit voltage (VOC) remained relatively stable. We found that a solution based TiOxlayer synthesized using a sol-gel chemistry method was very effective in protecting the active layer from degradation.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Sayeda Anika Amin ◽  
Md. Tanvir Hasan ◽  
Muhammad Shaffatul Islam

In0.53Ga0.47As/GaAs-based quantum dot intermediate band solar cells (QDIBSCs) have been designed and optimized for the next generation photovoltaic technology. The wave behavior of charge carriers inside the dot and their barrier have been analyzed with different dot sizes and interdot spacing. The device characteristics such as short circuit current density, Jsc, open circuit voltage, Voc, and conversion efficiency, η, have been evaluated. Based on the behavior of electron wave function, it is found that varying the dot spacing leads to a change in the IB width and in the density of states, whereas varying the size of dots leads to a formation of a second IB. For a fixed dot spacing, two ranges of dot sizes vary the number of IBs in In0.53Ga0.47As/GaAs QDIBSC. Smaller dots of a size ranging from 2 nm to 5 nm form a single IB while larger dots of a size ranging from 6 nm to 9 nm can produce 2 IBs. The efficiency of 2 IBs close to 1 IB suggests that formation of multiple IBs can possibly enhance the device efficiency.


2015 ◽  
Vol 1107 ◽  
pp. 625-630
Author(s):  
Fatin Hana Naning ◽  
S. Malik ◽  
Zanuldin Ahmad

Cadmium sulfide (CdS) were synthesised directly in the active layer of solar cell by mixing regioregular poly (3-hexylthiophene-2,5-diyl) or P3HT with stearic acid, and exposed to hydrogen sulfide gas. The exposure times to hydrogen sulfide gas were varied and the isotherm of P3HT:Stearic acid obtained show that the presence of cadmium ions in the subphase changes the gas-liquid-solid transformation profile. UV-Vis-NIR results indicated that exposure to hydrogen sulfide gas created CdS particles resulting in wider absorption spectra. The exposed P3HT:SA active layer exhibit high resistance that affects short circuit current density and open circuit voltage of the solar cells device. Keywords: CdS, P3HT, Thin Film, Angle Lifting Deposition, Solar Cells


2013 ◽  
Vol 743-744 ◽  
pp. 920-925
Author(s):  
Hong Zhou Yan ◽  
Jun You Yang ◽  
Shuang Long Feng ◽  
Ming Liu ◽  
Jiang Ying Peng ◽  
...  

TiO2 nanotubes array was fabricated by anodization. Effect of reaction duration on the morphology of TiO2 nanotube arrays was studied detailedly. The structure and morphology of the prepared nanotubes array was characterized by X-ray diffraction and scanning electron microscopy, respectively. The fabricated TiO2 arrays were peeled off and adhered to FTO glass with adhesive (mixture of tetrabutyl titanate and polyethylene glycol), then they were sintered at 450 for photoanode of DSSC. The photovoltaic performance of the prepared sample as the DSSC anode was investigated. An open circuit voltage of 0.69V and a short circuit current density of 7.78mA/cm2 were obtained, and the fill factor and the convert efficiency were 0.517 and 2.78%, respectively.


2008 ◽  
Vol 1123 ◽  
Author(s):  
Peter T. Mersich ◽  
Shubhranshu Verma ◽  
Wayne A. Anderson ◽  
Rossman F. Giese

AbstractA metal-induced growth (MIG) process was employed to deposit thin films of microcrystalline silicon (μc-Si) for solar cell applications. Due to different grain orientations of the crystals, the absorption coefficient of μc-Si is about 10 times higher than the absorption coefficient of single crystalline Si. The properties of the Si film were investigated resulting from variations in several parameters. A range of Ni and Co thicknesses were examined from 7.5 nm to 60 nm including combinations of the two, while the dc sputtering power was stepped up from 150 W to 225 W. The structure of the resulting film was studied using scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS) and x-ray diffraction (XRD). SEM of the film revealed that 5 hr of Si deposition at 150 W yields a film thickness of 6.5 μm and a maximum grain size of about 0.6 μm. EDS data showed that at the middle of the Si film the atomic percentage of the Si was 99.17%. XRD data showed that the dominant crystal orientation is {220}. To characterize the photovoltaic properties of the μc-Si, Schottky photodiodes were fabricated. Ni alone as the seed layer resulted in ohmic behavior. With Co only, MIG formed a rectifying contact with open-circuit voltage (V∝). The combination of Co layered over Ni formed better thin films and gave a Voc of 0.24 V and short-circuit current density (Jsc) of 5.0 mA/cm2 since the Co prevents Ni contamination of the top of the grown Si layer.


2013 ◽  
Vol 805-806 ◽  
pp. 1235-1239 ◽  
Author(s):  
Cheng Fang Ou ◽  
Pei Yun Chen

Poly (3-hexylthiophene) (P3HT) is a wide application in active layer of solar cell. It is a soluble conductive polymer but their mechanical properties are poor and its conductivity is unstable in environmental condition. We add polymethylmethacrylate (PMMA) into active layer to overcome these disadvantages. We investigated the effect of adding PMMA and graphene into solar cell on its characteristics of polymer solar cell. The cell structure was ITO/PEDOT:PSS/P3HT:PCBM:PMMA/Ca/Al. The 0.02, 0.04 and 0.06 weight ratio of PMMA were added into the P3HT:PCBM (1:1 ratio by weight) active layer. The device with 0.04 PMMA exhibits the highest short circuit current density (Jsc, 9.01 mA/cm2 ) and power conversion efficiency (PCE, 3.39%). The increases of Jsc and PCE are 26.5% and 49.3%, respectively compared with the device based on the pristine P3HT:PCBM active layer giving Jsc and PCE of 7.12 mA/cm2 and 2.27%. Graphene exhibits good electron conductivity, thermal conductivity, chemical stability and strength. We investigated the effect of inserting graphene between hole transfer layer (HTL) of poly (ethylene dioxythiophene) (PEDOT)-polystyrene sulfonic acid (PSS) (PEDOT:PSS) and active layer on the characteristics of polymer solar cell. The cell structure was ITO/PEDOT:PSS/Graphene/P3HT:PCBM:PMMA/Ca/Al. The concentration of graphene solution was 2.2 mg/ml and the graphene layer was coated by spin-coating at 6000 rpm and the weight ratio of PMMA in the P3HT:PCBM active layer was 0.04. The Jsc of device was increased to 9.45 mA/cm2 , an increase of 32.7%. The PCE of the device was increased to 3.63%, an increase of 59.9%.


Sign in / Sign up

Export Citation Format

Share Document